Semi-infinite Quantum Wells In a Position-Dependent Mass Background

被引:0
|
作者
C. Quesne
机构
[1] Université Libre de Bruxelles,Physique Nucléaire Théorique et Physique Mathématique
来源
Quantum Studies: Mathematics and Foundations | 2023年 / 10卷
关键词
Schrödinger equation; Position-dependent mass; Quantum well; Point canonical transformation; 81Q05; 81Q80;
D O I
暂无
中图分类号
学科分类号
摘要
Using a point canonical transformation starting from the constant-mass Schrödinger equation for the Morse potential, it is shown that a semi-infinite quantum well model with a non-rectangular profile associated with a position-dependent mass that becomes infinite for some negative value of the position, while going to a constant for a large positive value of the latter can be easily derived. In addition, another type of semi-infinite quantum well associated with the same position-dependent mass is constructed and solved by starting from the Rosen-Morse II potential instead of the Morse one.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 50 条
  • [1] Semi-infinite Quantum Wells In a Position-Dependent Mass Background
    Quesne, C.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2023, 10 (02) : 237 - 244
  • [2] Position-dependent exact-exchange energy for slabs and semi-infinite jellium
    Horowitz, C. M.
    Constantin, L. A.
    Proetto, C. R.
    Pitarke, J. M.
    PHYSICAL REVIEW B, 2009, 80 (23):
  • [3] Position-dependent mass in strong quantum gravitational background fields
    Lawson, Latevi Mohamed
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (10)
  • [4] CYLINDRICAL QUANTUM WELL WITH POSITION-DEPENDENT MASS
    PEREZALVAREZ, R
    PARRASANTIAGO, JL
    PAJONSUAREZ, P
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1988, 147 (01): : 127 - 133
  • [5] Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
    Schmidt, Alexandre G. M.
    Azeredo, Abel D.
    Gusso, A.
    PHYSICS LETTERS A, 2008, 372 (16) : 2774 - 2781
  • [6] A singular position-dependent mass particle in an infinite potential well
    Mustafa, Omar
    Mazharimousavi, S. Habib
    PHYSICS LETTERS A, 2009, 373 (03) : 325 - 327
  • [7] Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses
    Rami Ahmad El-Nabulsi
    Waranont Anukool
    Applied Physics A, 2021, 127
  • [8] Diffusion and quantum dynamics of particles with position-dependent mass
    V. Zh. Sakbaev
    O. G. Smolyanov
    Doklady Mathematics, 2012, 86 : 460 - 463
  • [9] Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses
    El-Nabulsi, Rami Ahmad
    Anukool, Waranont
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (11):
  • [10] Dynamics of a Quantum Particle with Discontinuous Position-Dependent Mass
    Sakbaev, V. G.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 630 - 633