Laguerre calculus and Paneitz operator on the Heisenberg group

被引:0
|
作者
Der-Chen Chang
Shu-Cheng Chang
JingZhi Tie
机构
[1] Georgetown University,Department of Mathematics
[2] National Taiwan University,Department of Mathematics
[3] University of Georgia,Department of Mathematics
来源
Science in China Series A: Mathematics | 2009年 / 52卷
关键词
Paneitz operator; Heisenberg group; Laguerre calculus; fundamental solution; heat kernel; spectrum; 35H20; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$\end{document} Here “Zj”j=1n is an orthonormal basis for the subbundle T(1,0) of the complex tangent bundle Tℂ(Hn) and T is the “missing direction”. The operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λα. We also construct projection operators and relative fundamental solution for the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} while α ∈ Λα.
引用
收藏
页码:2549 / 2569
页数:20
相关论文
共 50 条
  • [21] Operator-Valued Frames for the Heisenberg Group
    Benjamin Robinson
    William Moran
    Douglas Cochran
    Stephen D. Howard
    Journal of Fourier Analysis and Applications, 2015, 21 : 1384 - 1397
  • [22] Eigenvalue estimates for a generalized Paneitz operator
    Azami, Shahroud
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02):
  • [23] The Sobolev inequality for Paneitz operator on three manifolds
    Fengbo Hang
    Paul C. Yang
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 57 - 83
  • [24] Approximate identities from Laguerre functions and singular integrals on the Heisenberg group
    Beals, R
    Greiner, P
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1): : 213 - 237
  • [25] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on ℂn
    Der-Chen Chang
    Peter Griener
    Jingzhi Tie
    Science in China Series A: Mathematics, 2006, 49 : 1722 - 1739
  • [26] HARDY-SPACES AND LAGUERRE EXPANSIONS ON THE DUAL OF THE HEISENBERG-GROUP
    VIGNATI, AT
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 166 : 145 - 153
  • [27] Approximate identities from Laguerre functions and singular integrals on the Heisenberg group
    Richard Beals
    Peter Greiner
    Journal d’Analyse Mathématique, 2003, 89 : 213 - 237
  • [28] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on Cn
    Chang Der-Chen
    Griener Peter
    Tie Jingzhi
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1722 - 1739
  • [29] Moment results for the heisenberg group interpreted using the weyl calculus
    Eby, Wayne M.
    Recent Progress on Some Problems in Several Complex Variables and Partial Differential Equations, 2006, 400 : 95 - 105
  • [30] PHASE-SPACE ANALYSIS AND PSEUDODIFFERENTIAL CALCULUS ON THE HEISENBERG GROUP
    Bahouri, Hajer
    Fermanian-Kammerer, Clotilde
    Gallagher, Isabelle
    ASTERISQUE, 2012, (342) : 1 - +