Laguerre calculus and Paneitz operator on the Heisenberg group

被引:0
|
作者
Der-Chen Chang
Shu-Cheng Chang
JingZhi Tie
机构
[1] Georgetown University,Department of Mathematics
[2] National Taiwan University,Department of Mathematics
[3] University of Georgia,Department of Mathematics
来源
Science in China Series A: Mathematics | 2009年 / 52卷
关键词
Paneitz operator; Heisenberg group; Laguerre calculus; fundamental solution; heat kernel; spectrum; 35H20; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$\end{document} Here “Zj”j=1n is an orthonormal basis for the subbundle T(1,0) of the complex tangent bundle Tℂ(Hn) and T is the “missing direction”. The operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λα. We also construct projection operators and relative fundamental solution for the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L}_\alpha $$\end{document} while α ∈ Λα.
引用
收藏
页码:2549 / 2569
页数:20
相关论文
共 50 条
  • [1] Laguerre calculus and Paneitz operator on the Heisenberg group
    CHANG Der-Chen
    Science China Mathematics, 2009, (12) : 2549 - 2569
  • [2] Laguerre calculus and Paneitz operator on the Heisenberg group
    Chang Der-Chen
    Chang Shu-Cheng
    Tie JingZhi
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (12): : 2549 - 2569
  • [3] The Paneitz operator on the anisotropic quaternionic Heisenberg group
    Wang, Haimeng
    Chen, Bo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (11) : 1941 - 1958
  • [4] THE LAGUERRE CALCULUS ON THE HEISENBERG-GROUP .2.
    BEALS, RW
    GAVEAU, B
    GREINER, PC
    VAUTHIER, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1986, 110 (03): : 225 - 288
  • [5] Functional calculus for the Laguerre operator
    Sasso, E
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (03) : 683 - 711
  • [6] Functional calculus for the Laguerre operator
    E Sasso
    Mathematische Zeitschrift, 2005, 249 : 683 - 711
  • [7] Applications of Laguerre calculus to Dirichlet problem of the Heisenberg Laplacian
    Chang, DC
    Tie, JZ
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 47 - 53
  • [8] Hermite operator on the Heisenberg group
    Calin, O
    Chang, DC
    Tie, JZ
    HARMONIC ANALYSIS, SIGNAL PROCESSING, AND COMPLEXITY: FESTSCHRIFT IN HONOR OF THE 60TH BIRTHDAY OF CARLOS A. BERENSTEIN, 2005, 238 : 37 - 54
  • [9] Differential calculus on the quantum Heisenberg group
    Kosinski, P
    Maslanka, P
    Przanowski, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5693 - 5698
  • [10] Estimates for eigenvalues of the Paneitz operator
    Cheng, Qing-Ming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) : 3868 - 3886