Prediction of newborn’s body mass index using nationwide multicenter ultrasound data: a machine-learning study

被引:0
|
作者
Kwang-Sig Lee
Ho Yeon Kim
Se Jin Lee
Sung Ok Kwon
Sunghun Na
Han Sung Hwang
Mi Hye Park
Ki Hoon Ahn
机构
[1] AI Center,Department of Obstetrics and Gynecology
[2] Korea University College of Medicine,Department of Obstetrics and Gynecology
[3] Korea University College of Medicine,Department of Preventive Medicine
[4] Kangwon National University Hospital,Department of Obstetrics and Gynecology
[5] Kangwon National University School of Medicine,Department of Obstetrics and Gynecology
[6] Kangwon National University School of Medicine,undefined
[7] Kangwon,undefined
[8] Research Institute of Medical Science,undefined
[9] Konkuk University School of Medicine,undefined
[10] Ewha Medical Institute,undefined
[11] Ewha Medical Center,undefined
[12] Ewha Womans University College of Medicine,undefined
关键词
Newborn; Body mass index; Estimated fetal weight; Abdominal circumference;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [31] Machine-learning prediction of cancer survival: A prospective study examining the impact of combining clinical and genomic data
    Ashley, David M.
    Gupta, Sunil
    Truyen Tran
    Wei, Luo
    Lorgelly, Paula K.
    Thomas, David Morgan
    Fox, Stephen B.
    Venkatesh, Svetha
    JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15)
  • [32] Glycaemic Index Prediction: a Pilot Study of Data Linkage Challenges and the Application of Machine Learning
    Li, Jingyuan
    Arandjelovic, Ognjen
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 357 - 360
  • [33] Estimate Height Weight and Body Mass Index From Face Image Using Machine Learning
    Kumar, Ashwani
    Deeksha, Kondam
    Pooja, G. Sai
    Reddy, T. Tarun
    Reddy, Tera Akhil
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [34] Using machine-learning methods to predict in-hospital mortality through the Elixhauser index: A Medicare data analysis
    Liu, Jianfang
    Glied, Sherry
    Yakusheva, Olga
    Bevin, Cohen
    Schlak, Amelia E.
    Yoon, Sunmoo
    Kulage, Kristine M.
    Poghosyan, Lusine
    RESEARCH IN NURSING & HEALTH, 2023, 46 (04) : 411 - 424
  • [35] Classification and Prediction of Communication Cables Length Based on S-Parameters Using a Machine-Learning Method
    Al Bataineh, Mohammad
    Umar, Malik Mohamed
    Moin, Aquib
    Hussein, Mousa I.
    Al Ahmad, Mahmoud
    IEEE ACCESS, 2023, 11 : 108041 - 108049
  • [36] Improving the diagnosis of heparin-induced thrombocytopenia using a machine-learning algorithm: a prospective, multicenter, observational study
    Nilius, H.
    Cuker, A.
    Haug, S.
    Nakas, C.
    Studt, J. -D
    Tsakiris, D. A.
    Greinacher, A.
    Mendez, A.
    Schmidt, A.
    Wuillemin, W. A.
    Gerber, B.
    Hovinga, Kremer J. A.
    Vishnu, P.
    Graf, L.
    Kashev, A.
    Sznitman, R.
    Bakchoul, T.
    Nagler, M.
    ONCOLOGY RESEARCH AND TREATMENT, 2022, 45 (SUPPL 2) : 234 - 235
  • [37] Prediction of body mass index status from voice signals based on machine learning for automated medical applications
    Lee, Bum Ju
    Kim, Keun Ho
    Ku, Boncho
    Jang, Jun-Su
    Kim, Jong Yeol
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 58 (01) : 51 - 61
  • [38] Individual-Level Prediction of Exposure Therapy Outcome Using Structural and Functional MRI Data in Spider Phobia: A Machine-Learning Study
    Chavanne, Alice V.
    Meinke, Charlotte
    Langhammer, Till
    Roesmann, Kati
    Boehnlein, Joscha
    Gathmann, Bettina
    Herrmann, Martin J.
    Junghoefer, Markus
    Klahn, Luisa
    Schwarzmeier, Hanna
    Seeger, Fabian R.
    Siminski, Niklas
    Straube, Thomas
    Dannlowski, Udo
    Lueken, Ulrike
    Leehr, Elisabeth J.
    Hilbert, Kevin
    DEPRESSION AND ANXIETY, 2023, 2023
  • [39] Assessment of machine-learning methods for the prediction of STN using multi-source data in Fuzhou city, China
    Sodango, Terefe Hanchiso
    Sha, Jinming
    Li, Xiaomei
    Bao, Zhongcong
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [40] Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
    Gupta, Sunil
    Truyen Tran
    Luo, Wei
    Dinh Phung
    Kennedy, Richard Lee
    Broad, Adam
    Campbell, David
    Kipp, David
    Singh, Madhu
    Khasraw, Mustafa
    Matheson, Leigh
    Ashley, David M.
    Venkatesh, Svetha
    BMJ OPEN, 2014, 4 (03):