Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer)

被引:0
|
作者
Jorge R. Zurita-Sánchez
Jairo Méndez-Villanueva
机构
[1] Instituto Nacional de Astrofísica,
[2] Óptica y Electrónica,undefined
来源
Plasmonics | 2018年 / 13卷
关键词
Förster energy transfer; Fluorescence resonance energy transfer; Plasmons; Dimer;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.
引用
收藏
页码:873 / 883
页数:10
相关论文
共 50 条
  • [11] Nonradiative and radiative Förster energy transfer between quantum dots
    A. N. Poddubny
    A. V. Rodina
    Journal of Experimental and Theoretical Physics, 2016, 122 : 531 - 538
  • [12] Förster-type resonance energy transfer (FRET): Applications
    Demir H.V.
    Hernández Martínez P.L.
    Govorov A.
    SpringerBriefs in Applied Sciences and Technology, 2017, 0 (9789811018749): : 1 - 40
  • [13] Förster resonance energy transfer within single chain nanoparticles
    Maag, Patrick H.
    Feist, Florian
    Frisch, Hendrik
    Roesky, Peter W.
    Barner-Kowollik, Christopher
    CHEMICAL SCIENCE, 2024, 15 (14) : 5218 - 5224
  • [14] Förster Resonance Energy Transfer Control by Means of an Optical Force
    Nagai, Tatsuya
    Jie, Lu
    Teranishi, Satsuki
    Yuyama, Ken-ichi
    Shoji, Tatsuya
    Matsumura, Yuriko
    Tsuboi, Yasuyuki
    ADVANCED OPTICAL MATERIALS, 2024, 12 (19)
  • [15] satFRET: estimation of Förster resonance energy transfer by acceptor saturation
    Martin Beutler
    Konstantina Makrogianneli
    Rudolf J. Vermeij
    Melanie Keppler
    Tony Ng
    Thomas M. Jovin
    Rainer Heintzmann
    European Biophysics Journal, 2008, 38 : 69 - 82
  • [16] Nanobioanalytical luminescence: Förster-type energy transfer methods
    Aldo Roda
    Massimo Guardigli
    Elisa Michelini
    Mara Mirasoli
    Analytical and Bioanalytical Chemistry, 2009, 393
  • [17] Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape
    Gill, Jashanjot Kaur
    Shaw, Gary S.
    CHEMBIOCHEM, 2024, 25 (19)
  • [18] Förster Resonance Energy Transfer Study of Cytochrome c—Lipid Interactions
    Galyna P. Gorbenko
    Valeriya Trusova
    Julian G. Molotkovsky
    Journal of Fluorescence, 2018, 28 : 79 - 88
  • [19] Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate
    Pinchuk, A
    Schatz, G
    NANOTECHNOLOGY, 2005, 16 (10) : 2209 - 2217
  • [20] Restricted state selection in fluorescent protein Förster resonance energy transfer
    Larijani, B. (banafshe.larijani@cancer.org.uk), 1600, American Chemical Society (135):