Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer)

被引:0
|
作者
Jorge R. Zurita-Sánchez
Jairo Méndez-Villanueva
机构
[1] Instituto Nacional de Astrofísica,
[2] Óptica y Electrónica,undefined
来源
Plasmonics | 2018年 / 13卷
关键词
Förster energy transfer; Fluorescence resonance energy transfer; Plasmons; Dimer;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.
引用
收藏
页码:873 / 883
页数:10
相关论文
共 50 条
  • [1] Forster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer)
    Zurita-Sanchez, Jorge R.
    Mendez-Villanueva, Jairo
    PLASMONICS, 2018, 13 (03) : 873 - 883
  • [2] Förster Resonance Energy Transfer Between Molecules in the Vicinity of Graphene-Coated Nanoparticles
    Tingting Bian
    Railing Chang
    P. T. Leung
    Plasmonics, 2016, 11 : 1239 - 1246
  • [3] Electrical control of Förster energy transfer
    Klaus Becker
    John M. Lupton
    Josef Müller
    Andrey L. Rogach
    Dmitri V. Talapin
    Horst Weller
    Jochen Feldmann
    Nature Materials, 2006, 5 : 777 - 781
  • [4] Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene
    P. V. Karpach
    S. A. Maskevich
    G. T. Vasilyuk
    V. V. Britikov
    S. A. Usanov
    A. A. Khuzin
    M. V. Artemiev
    Journal of Applied Spectroscopy, 2022, 89 : 462 - 470
  • [5] Photonic effects on the Förster resonance energy transfer efficiency
    Freddy T. Rabouw
    Stephan A. den Hartog
    Tim Senden
    Andries Meijerink
    Nature Communications, 5
  • [6] Bacterial detection based on Förster resonance energy transfer
    Zhang, Wanqing
    Li, Weiqiang
    Song, Yang
    Xu, Qian
    Xu, Hengyi
    Biosensors and Bioelectronics, 2024, 255
  • [7] Förster resonance energy transfer within the neomycin aptamer
    Hurter, Florian
    Halbritter, Anna-Lena J.
    Ahmad, Iram M.
    Braun, Markus
    Sigurdsson, Snorri Th.
    Wachtveitl, Josef
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 7157 - 7165
  • [8] Paths to Förster’s resonance energy transfer (FRET) theory
    B.R. Masters
    The European Physical Journal H, 2014, 39 : 87 - 139
  • [9] Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials
    Jalihal, Amanda
    Le, Thuy
    Macchi, Samantha
    Krehbiel, Hannah
    Bashiru, Mujeebat
    Forson, Mavis
    Siraj, Noureen
    SUSTAINABLE CHEMISTRY, 2021, 2 (04): : 564 - 575
  • [10] Plasmon-Activated Förster Energy Transfer in Molecular Systems
    Ibrayev N.K.
    Kucherenko M.G.
    Temirbayeva D.A.
    Seliverstova E.V.
    Optics and Spectroscopy, 2023, 131 (06) : 398 - 403