Generalized Lebesgue points for Sobolev functions

被引:0
|
作者
Nijjwal Karak
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
来源
关键词
Sobolev space; metric measure space; median; generalized Lebesgue point; 46E35; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f ∈ Ms,p(X), 0 < s ≤ 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of Hh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}^h$$\end{document}-Hausdorff measure zero for a suitable gauge function h.
引用
收藏
页码:143 / 150
页数:7
相关论文
共 50 条