Generalized Lebesgue Points for Hajlasz Functions

被引:4
|
作者
Heikkinen, Toni [1 ]
机构
[1] Aalto Univ, Dept Math, POB 11100, Aalto 00076, Finland
关键词
SOBOLEV SPACES; EXTENSION; BESOV; DECOMPOSITION; OSCILLATION;
D O I
10.1155/2018/5637042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by alpha(X) the generalized upper Boyd index of X We show that if alpha(X) < infinity and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajlasz function u is an element of(M) over dot(s,X) Moreover, if alpha(X) < (Q+s)/Q, then quasievery point is a Lebesgue point of u. As an application we obtain Lebesgue type theorems for Lorentz-Hajlasz, Orlicz-Hajlasz, and variable exponent Hajlasz functions.
引用
收藏
页数:12
相关论文
共 50 条