The creep behavior of rock shear seepage under different seepage-water pressures

被引:0
|
作者
Guanghe Li
Yanting Wang
Dong Wang
Laigui Wang
Shipeng Zhang
Cunjin Li
Ruixue Teng
机构
[1] Liaoning Technical University,College of Mining
[2] Inner Mongolia Baiyinhua Mengdong Open-pit Coal Co. Ltd.,undefined
来源
关键词
Shear–seepage coupling; Injection water pressure; Accelerated phase; Nonlinear model;
D O I
暂无
中图分类号
学科分类号
摘要
The long-term compression–shear–seepage coupling of rock mass is a cause of many engineering geological disasters. This study aimed to explore the creep characteristics of rock mass under different seepage conditions. Based on the shear-creep–seepage test results of shale, the shear-creep–seepage model considering damage was constructed using a series connection of the elastomer (H), a nonlinear viscoelastic body with nonlinear function λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document} (NVEP), a viscoplastic body with seepage switch S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S$\end{document} (VPB), and a viscoelastic–plastic body considering damage (VEPB). The variation law of the model parameters was analyzed, and the results showed that the model effectively described the entire change process of rock-creep characteristics, notably the deformation law of the accelerated-creep stage. The correlation coefficient R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{2}$\end{document} was greater than 0.98, and the fitting curve was highly consistent with the experimental data. Furthermore, the greater the seepage-water pressure, the smaller the shear stress applied in the corresponding test of each stage, and the greater the cumulative shear strain of each stage. Moreover, the seepage-water pressure had a damaging effect on the mechanical strength of the rock samples. The parameter values k1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{1}$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document} were negatively correlated with seepage-water pressure and shear stress, whereas the parameter values k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{2}$\end{document} and η1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta _{1}$\end{document} were negatively correlated with seepage-water pressure and positively correlated with shear stress. The results of this study can provide theoretical support for the research and analysis of rock-mass engineering stability under long-term seepage conditions.
引用
收藏
页码:351 / 365
页数:14
相关论文
共 50 条
  • [31] The Mass Loss Behavior of Fractured Rock in Seepage Process: The Development and Application of a New Seepage Experimental System
    Kong, Hailing
    Wang, Luzhen
    [J]. ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [32] Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness
    Xia Cai-chu
    Yu Qiang-feng
    Qian Xin
    Gui Yang
    Zhuang Xiao-qing
    [J]. ROCK AND SOIL MECHANICS, 2020, 41 (01) : 57 - +
  • [33] Analysis and study on seepage characteristics of floor rock mass under different stress states
    Zhang, Peisen
    Hou, Jiqun
    Zhao, Chengye
    Li, Tenghui
    [J]. Meitan Kexue Jishu/Coal Science and Technology (Peking), 2022, 50 (01): : 127 - 133
  • [34] Experimental Study on Gas Seepage Characteristics of Axially Unloaded Coal under Different Confining Pressures and Gas Pressures
    Ding, Ke
    Wang, Lianguo
    Wang, Wenmiao
    Li, Zhaolin
    Jiang, Chongyang
    Ren, Bo
    Wang, Shuai
    [J]. PROCESSES, 2022, 10 (06)
  • [35] Effect of different anti-seepage measures and surrounding soil water on canal seepage
    Yao, Li-Qiang
    Mao, Xiao-Min
    Feng, Shao-Yuan
    Huo, Zai-Lin
    [J]. Shuili Xuebao/Journal of Hydraulic Engineering, 2010, 41 (11): : 1360 - 1366
  • [36] Experimental Study on Seepage Characteristics of Fractured Rock Mass under Different Stress Conditions
    Ma, Haifeng
    Yao, Fanfan
    Niu, Xin'gang
    Guo, Jia
    Li, Yingming
    Yin, Zhiqiang
    Li, Chuanming
    [J]. GEOFLUIDS, 2021, 2021
  • [37] Experimental study on seepage characteristics of deep sandstone under high temperature and different hydraulic pressures
    Zhang P.
    Zhao C.
    Hou J.
    Li T.
    [J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (06): : 1117 - 1128
  • [38] Experimental study on seepage and mechanical properties of sandstone under different confining pressures and cyclic loads
    Zhang P.
    Xu D.
    Zhang R.
    Zhang X.
    Dong Y.
    Mu W.
    [J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (12): : 2432 - 2450
  • [39] Effective gas extraction radius of different burial depths under creep-seepage coupling
    Hao F.
    Liu Y.
    Long W.
    Zuo W.
    [J]. Meitan Xuebao/Journal of the China Coal Society, 2017, 42 (10): : 2616 - 2622