Minimizers of energy functionals

被引:0
|
作者
C. Léonard
机构
[1] CENTRE DE MATHÉMATIQUES APPLIQUÉES ECOLE POLYTECHNIQUE,
来源
关键词
Previous Literature; General Class; Product Space; Linear Constraint; Integrability Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of problems of minimization of convex integralfunctionals (maximization of entropy) subject to linear constraints. Undergeneral assumptions, the minimizing solutions are characterized. Our resultsimprove previous literature on the subject in the following directions: -anecessary and suficient condition for the shape of the minimizing densityis proved -without constraint qualification -under infinitely many linearconstraints subject to natural integrability conditions (no topological restrictions).As an illustration, we give the general shape of the minimizing density forthe marginal problem on a product space. Finally, a counterexample of I. Csiszáris clarified. Our proofs mainly rely on convex duality.
引用
收藏
页码:281 / 325
页数:44
相关论文
共 50 条
  • [21] REGULARITY FOR MINIMIZERS OF DEGENERATE ELLIPTIC FUNCTIONALS
    Carozza, Menita
    Di Napoli, Antonia Passarelli
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (03) : 375 - 383
  • [22] PARTIAL REGULARITY FOR MINIMIZERS OF SINGULAR ENERGY FUNCTIONALS, WITH APPLICATION TO LIQUID CRYSTAL MODELS
    Evans, Lawrence C.
    Kneuss, Olivier
    Hung Tran
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3389 - 3413
  • [23] Global integrability for minimizers of anisotropic functionals
    Leonetti, Francesco
    Siepe, Francesco
    MANUSCRIPTA MATHEMATICA, 2014, 144 (1-2) : 91 - 98
  • [24] Partial regularity for ω-minimizers of quasiconvex functionals
    Li, Zhuolin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [25] Global integrability for minimizers of anisotropic functionals
    Francesco Leonetti
    Francesco Siepe
    Manuscripta Mathematica, 2014, 144 : 91 - 98
  • [26] Local boundedness of minimizers of anisotropic functionals
    Cianchi, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02): : 147 - 168
  • [27] Characterization of minimizers of convex regularization functionals
    Poeschl, Christiane
    Scherzer, Otmar
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 219 - 248
  • [28] New Challenges on the Regularity of Minimizers of Functionals
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (02) : 675 - 690
  • [29] Existence Results for Minimizers of Parametric Elliptic Functionals
    Guido De Philippis
    Antonio De Rosa
    Francesco Ghiraldin
    The Journal of Geometric Analysis, 2020, 30 : 1450 - 1465
  • [30] Uniqueness of Absolute Minimizers for -Functionals Involving Hamiltonians
    Miao, Qianyun
    Wang, Changyou
    Zhou, Yuan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (01) : 141 - 198