Plane Symmetric Domain Wall in Lyra Geometry

被引:0
|
作者
Anirudh Pradhan
I. Aotemshi
G.P. Singh
机构
[1] Hindu Post-graduate College,Department of Mathematics
[2] Zamania,undefined
来源
关键词
domain wall; cosmology; Lyra geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper general solutions are found for domain walls in Lyra geometry in the plane symmetric spacetime metric given by Taub. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. It is also shown that the results obtained by Rahaman et al [IJMPD, 10, 735 (2001)] are particular case of our solutions. Finally, the geodesic equations and acceleration of the test particle are discussed.
引用
收藏
页码:315 / 325
页数:10
相关论文
共 50 条
  • [41] Global monopoles in Lyra geometry
    Rahaman, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (06): : 775 - 779
  • [42] On causality violation in Lyra Geometry
    Jesus, W. D. R.
    Santos, A. F.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (08)
  • [43] COSMIC STRINGS IN LYRA GEOMETRY
    MATYJASEK, J
    ROGATKO, M
    ASTROPHYSICS AND SPACE SCIENCE, 1992, 192 (02) : 299 - 308
  • [44] Spinorial field and Lyra geometry
    Casana, R.
    de Melo, C. A. M.
    Pimentel, B. M.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (02) : 125 - 132
  • [45] COSMOLOGIES BASED ON LYRA GEOMETRY
    SOLENG, HH
    GENERAL RELATIVITY AND GRAVITATION, 1987, 19 (12) : 1213 - 1216
  • [46] Spinorial Field and Lyra Geometry
    R. Casana
    C. A. M. de Melo
    B. M. Pimentel
    Astrophysics and Space Science, 2006, 305 : 125 - 132
  • [47] Global texture in Lyra geometry
    Rahaman, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2003, 118 (01): : 17 - 25
  • [48] Axionic domain wall and warped geometry
    Shafi, Q
    Tavartkiladze, Z
    PHYSICS LETTERS B, 2001, 507 (1-4) : 277 - 286
  • [49] Global string in Lyra geometry
    Rahaman, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (04): : 579 - 583
  • [50] GEOMETRY OF THE SHILOV BOUNDARY OF A BOUNDED SYMMETRIC DOMAIN
    Clerc, Jean-Louis
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2009, 13 : 25 - 74