Self-dual representations of some dyadic groups

被引:0
|
作者
Colin J. Bushnell
Guy Henniart
机构
[1] King’s College London,Department of Mathematics
[2] Université de Paris-Sud,Laboratoire de Mathématiques d’Orsay
[3] CNRS,undefined
来源
Mathematische Annalen | 2011年 / 351卷
关键词
22E50;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a non-Archimedean local field of residual characteristic two and let d be an odd positive integer. Let D be a central F-division algebra of dimension d2. Let π be one of: an irreducible smooth representation of D × , an irreducible cuspidal representation of GLd(F), an irreducible smooth representation of the Weil group of F of dimension d. We show that, in all these cases, if π is self-contragredient then it is defined over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q}$$\end{document} and is orthogonal. We also show that such representations exist.
引用
收藏
页码:67 / 80
页数:13
相关论文
共 50 条
  • [11] Polarizations on Abelian varieties and self-dual l-adic representations of inertia groups
    Silverberg, A
    Zarhin, YG
    COMPOSITIO MATHEMATICA, 2001, 126 (01) : 25 - 45
  • [12] PROPERTIES OF SOME SELF-DUAL MONOPOLES
    FITZSIMMONS, S
    MCGLINN, WD
    PHYSICAL REVIEW D, 1987, 36 (08): : 2571 - 2574
  • [13] On the self-dual representations of a p-adic group
    Prasad, D
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (08) : 443 - 452
  • [14] On asymmetric representations of GF (qm) and self-dual codes
    Appl Algebra Eng Commun Comput, 2 (81):
  • [15] Deformation of Rigid Conjugate Self-dual Galois Representations
    Liu, Yi Feng
    Tian, Yi Chao
    Xiao, Liang
    Zhang, Wei
    Zhu, Xin Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (07) : 1599 - 1644
  • [16] Deformation of Rigid Conjugate Self-dual Galois Representations
    Yi Feng LIU
    Yi Chao TIAN
    Liang XIAO
    Wei ZHANG
    Xin Wen ZHU
    Acta Mathematica Sinica,English Series, 2024, (07) : 1599 - 1644
  • [17] Fock parafermions and self-dual representations of the braid group
    Cobanera, Emilio
    Ortiz, Gerardo
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [18] A note on self-dual representations of Sp(4, F)
    Balasubramanian, Kurnar
    JOURNAL OF NUMBER THEORY, 2019, 199 : 110 - 125
  • [19] Self-dual and quasi self-dual algebras
    M. Gerstenhaber
    Israel Journal of Mathematics, 2014, 200 : 193 - 211
  • [20] Self-dual and quasi self-dual algebras
    Gerstenhaber, M.
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 193 - 211