Self-dual representations of some dyadic groups

被引:0
|
作者
Colin J. Bushnell
Guy Henniart
机构
[1] King’s College London,Department of Mathematics
[2] Université de Paris-Sud,Laboratoire de Mathématiques d’Orsay
[3] CNRS,undefined
来源
Mathematische Annalen | 2011年 / 351卷
关键词
22E50;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a non-Archimedean local field of residual characteristic two and let d be an odd positive integer. Let D be a central F-division algebra of dimension d2. Let π be one of: an irreducible smooth representation of D × , an irreducible cuspidal representation of GLd(F), an irreducible smooth representation of the Weil group of F of dimension d. We show that, in all these cases, if π is self-contragredient then it is defined over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q}$$\end{document} and is orthogonal. We also show that such representations exist.
引用
收藏
页码:67 / 80
页数:13
相关论文
共 50 条