Parallel photonic information processing at gigabyte per second data rates using transient states

被引:0
|
作者
Daniel Brunner
Miguel C. Soriano
Claudio R. Mirasso
Ingo Fischer
机构
[1] Instituto de Física Interdisciplinar y Sistemas Complejos,
[2] IFISC (UIB-CSIC),undefined
来源
Nature Communications | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1 Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.
引用
收藏
相关论文
共 50 条
  • [21] Real-time photoacoustic data acquisition with a thousand parallel channels at hundreds frames per second
    Ivanov, Vassili
    Brecht, Hans Peter
    Ermilov, Sergey A.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2019, 2019, 10878
  • [22] Demonstration of Gigabit-per-second and higher data rates at extremely high efficiency using superconducting nanowire single photon detectors
    Robinson, Bryan S.
    Kerman, Andrew J.
    Dauler, Eric A.
    Boroson, Don M.
    Hamilton, Scott A.
    Yang, Joel K. W.
    Anant, Vikas
    Berggren, Karl K.
    FREE-SPACE LASER COMMUNICATIONS VII, 2007, 6709
  • [23] Acceleration of chemo-sensory information processing using transient features
    Muezzinoglu, Mehmet K.
    Vergara, Alexander
    Huerta, Ramon
    Rulkov, Nikolai
    Rabinovich, Mikhail I.
    Selverston, Al
    Abarbanel, Henry D. I.
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 137 (02) : 507 - 512
  • [24] Stemming Algorithm for Arabic Text Using a Parallel Data Processing
    Bougar, Marieme
    Ziyati, El Houssaine
    THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 261 - 268
  • [25] Parallel Massive Data Monitoring and Processing Using Sensor Networks
    Naji, Hamid Reza
    Rezaee, Najmeh
    IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: CYBERSECURITY AND BIG DATA, 2016, : 225 - 230
  • [26] Parallel and Distributed Powerset Generation Using Big Data Processing
    Essa, Youssef M.
    El-Mahalawy, Ahmed
    Attiya, Gamal
    El-Sayed, Ayman
    APPLIED ARTIFICIAL INTELLIGENCE, 2019, 33 (13) : 1133 - 1156
  • [27] Study on SAR Data Parallel Processing Using Computing Cluster
    Zhao, Yinghui
    Yue, Xijuan
    Han, Chunming
    PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA), 2014, : 327 - 330
  • [29] Efficient and Parallel Data Processing and Resource Allocation in the Cloud by using Nephele's Data Processing Framework
    Saranya, V.
    Ramya, S.
    Kumar, R. G. Suresh
    Nalini, T.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (03): : 33 - 40
  • [30] Macroscopic quantum information processing using spin coherent states
    Byrnes, Tim
    Rosseau, Daniel
    Khosla, Megha
    Pyrkov, Alexey
    Thomasen, Andreas
    Mukai, Tetsuya
    Koyama, Shinsuke
    Abdelrahman, Ahmed
    Ilo-Okeke, Ebubechukwu
    OPTICS COMMUNICATIONS, 2015, 337 : 102 - 109