Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images

被引:0
|
作者
Yajie Hu
Feng Su
Kun Dong
Xinyu Wang
Xinya Zhao
Yumeng Jiang
Jianming Li
Jiafu Ji
Yu Sun
机构
[1] Peking University Cancer Hospital and Institute,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology
[2] Peking University,Peking
[3] Tsinghua University,Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies
[4] Peking University Cancer Hospital and Institute,Institute for Artificial Intelligence, The State Key Laboratory of Intelligence Technology and Systems, Beijing National Research Center for Information Science and Technology, Department of Computer Science
来源
Gastric Cancer | 2021年 / 24卷
关键词
Gastric cancer; Deep learning; Lymph node quantification; Lymph node metastasis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:868 / 877
页数:9
相关论文
共 50 条
  • [31] The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning
    Chen, Yan
    Sun, Zepang
    Chen, Wanlan
    Liu, Changyan
    Chai, Ruoyang
    Ding, Jingjing
    Liu, Wen
    Feng, Xianzhen
    Zhou, Jun
    Shen, Xiaoyi
    Huang, Shan
    Xu, Zhongqing
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [32] Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
    Song, JaeYen
    Im, Soyoung
    Lee, Sung Hak
    Jang, Hyun-Jong
    DIAGNOSTICS, 2022, 12 (11)
  • [33] Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images
    Tomita, Naofumi
    Tafe, Laura J.
    Suriawinata, Arief A.
    Tsongalis, Gregory J.
    Nasir-Moin, Mustafa
    Dragnev, Konstantin
    Hassanpour, Saeed
    TRANSLATIONAL ONCOLOGY, 2022, 24
  • [34] Validated Supervised Deep Learning on Pathology Whole-Slide Images for HER2 Mutation Prediction in Lung Adenocarcinoma
    Xu, Y.
    Li, B.
    Zou, B.
    Fan, B.
    Yu, J.
    Wang, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E666 - E666
  • [35] Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images
    Zheng, Tingting
    Chen, Weixing
    Li, Shuqin
    Quan, Hao
    Zou, Mingchen
    Zheng, Song
    Zhao, Yue
    Gao, Xinghua
    Cui, Xiaoyu
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [36] GestAltNet: aggregation and attention to improve deep learning of gestational age from placental whole-slide images
    Mobadersany, Pooya
    Cooper, Lee A. D.
    Goldstein, Jeffery A.
    LABORATORY INVESTIGATION, 2021, 101 (07) : 942 - 951
  • [37] Deep Learning Classifier to Predict Cardiac Failure from Whole-Slide H&E Images
    Nirschl, Jeffrey
    Janowczyk, Andrew
    Peyster, Eliot
    Frank, Renee
    Margulies, Kenneth
    Feldman, Michael
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2017, 97 : 532A - 533A
  • [38] Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images
    Ba, Wei
    Wang, Rui
    Yin, Guang
    Song, Zhigang
    Zou, Jinyi
    Zhong, Cheng
    Yang, Jingrun
    Yu, Guanzhen
    Yang, Hongyu
    Zhang, Litao
    Li, Chengxin
    TRANSLATIONAL ONCOLOGY, 2021, 14 (09):
  • [39] Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
    Jang, Hyun-Jong
    Song, In-Hye
    Lee, Sung-Hak
    CANCERS, 2021, 13 (15)
  • [40] Improved DeTraC Binary Coyote Net-Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole-Slide Pathological Images
    Ramkumar, M.
    Kumar, R. Sarath
    Padmapriya, R.
    Mahandiran, S. Balu
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2024, 20 (06):