Modifications of the Interval-Newton-Method with improved asymptotic efficiency

被引:0
|
作者
G. E. Alefeld
F. A. Potra
W. Völker
机构
[1] Universität Karlsruhe,Institute für Angewandte Mathematik
[2] University of Iowa,Department of Mathematics
来源
BIT Numerical Mathematics | 1998年 / 38卷
关键词
65G10; 65H05; Nonlinear algebraic or transcendental equations; single equations; Interval-Newton-method; modifications;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper three new methods are introduced which compute lower and upper bounds of a simple zero of a real function. The lower and upper bounds are converging to this zero. Compared with the well-known Interval-Newton-Method, which has the same properties and asymptotic efficiency 1.414.... our optimal method has asymptotic efficiency 1.839... The new methods have been extensively tested on a large set of test examples.
引用
收藏
页码:619 / 635
页数:16
相关论文
共 50 条
  • [41] A Newton method for capturing efficient solutions of interval optimization problems
    Ghosh D.
    OPSEARCH, 2016, 53 (3) : 648 - 665
  • [42] Extended interval Newton method based on the precise quotient set
    Chin-Yun Chen
    Computing, 2011, 92 : 297 - 315
  • [43] Newton Method for Interval Predictor Model with Sphere Parameter Set
    Xiao, Xuan
    Wang, Peng
    Wang, Jian-Hong
    CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 727 - 737
  • [44] Reliable prediction of phase stability using an interval Newton method
    Univ of Illinois, Urbana, United States
    Fluid Phase Equilibria, 1996, 116 (1 -2 pt 1): : 52 - 59
  • [45] Investigations of periodic orbits in electronic circuits with interval Newton method
    Galias, Z
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B370 - B373
  • [46] Reliable prediction of phase stability using an interval Newton method
    Hua, JZ
    Brennecke, JF
    Stadtherr, MA
    FLUID PHASE EQUILIBRIA, 1996, 116 (1-2) : 52 - 59
  • [47] Extended interval Newton method based on the precise quotient set
    Chen, Chin-Yun
    COMPUTING, 2011, 92 (04) : 297 - 315
  • [48] An Adjustable Entropy Interval Newton Method for Linear Complementarity Problem
    Sha, Hu
    Wu, Yanqiang
    COMPUTING AND INTELLIGENT SYSTEMS, PT IV, 2011, 234 : 470 - 475
  • [49] ON AN INTERVAL NEWTON METHOD DERIVED FROM EXPONENTIAL CURVE FITTING
    PETKOVIC, MS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (02): : 117 - 119
  • [50] An Adjustable Entropy Interval Newton Method for Linear Complementarity Problem
    Wu, Yanqiang
    Shao, Hu
    2010 INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING (ICBSSP 2010), 2010, : 128 - 130