On the Chaotic Behaviour of Discontinuous Systems

被引:0
|
作者
Flaviano Battelli
Michal Fečkan
机构
[1] Università Politecnica delle Marche,Dipartimento di Scienze Matematiche
[2] Comenius University,Department of Mathematical Analysis and Numerical Mathematics
[3] Slovak Academy of Sciences,Mathematical Institute
关键词
Bernouilli shift; Chaotic behaviour; Discontinuous systems; 34C23; 34C37; 37G20;
D O I
暂无
中图分类号
学科分类号
摘要
We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C1 homoclinic solution that crosses transversally the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. Application of this result to quasi periodic systems are also given.
引用
下载
收藏
页码:495 / 540
页数:45
相关论文
共 50 条
  • [31] Non-chaotic behaviour in three-dimensional quadratic systems
    Fu, Z
    Heidel, J
    NONLINEARITY, 1997, 10 (05) : 1289 - 1303
  • [32] Experimental analysis of the steady-state behaviour of beam systems with discontinuous support
    VandeVorst, ELB
    vanCampen, DH
    deKraker, A
    Fey, RHB
    MECCANICA, 1996, 31 (03) : 293 - 308
  • [33] Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side
    Zelikin M.I.
    Lokutsievskii L.V.
    Hildebrand R.
    Journal of Mathematical Sciences, 2017, 221 (1) : 1 - 136
  • [34] Controlling chaotic behaviour for spin generator and Rossler dynamical systems with feedback control
    Hegazi, A
    Agiza, HN
    El-Dessoky, MM
    CHAOS SOLITONS & FRACTALS, 2001, 12 (04) : 631 - 658
  • [35] Using modern RF tools to detect chaotic behaviour of electronic circuits and systems
    Stavrinides, Stavros G.
    Papathanasiou, Kostas
    Anagnostopoulos, Antonios N.
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2015, 102 (02) : 233 - 247
  • [36] Global steady-state chaotic behaviour of power systems containing dc
    Bodger, PS
    Irwin, GD
    Woodford, DA
    Gole, AM
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1997, 34 (04) : 291 - 307
  • [37] Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication
    Yang, Xinsong
    Yang, Zhichun
    Nie, Xiaobing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (05) : 1529 - 1543
  • [38] On the chaotic behaviour of buck converters
    Mehrizi-Sani, A.
    Kinsner, W.
    Filizadeh, S.
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 1145 - 1149
  • [39] On the Chaotic Behaviour of the Henon Map
    Antognini, Francesco
    Stoffer, Daniel
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 936 - 938
  • [40] Control of chaotic behaviour with ANN
    d'Anjou, A
    Torrealdea, FJ
    Sarasola, C
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 127 - 130