Specific Features of the Numerical Solution of Problems for a Generalized Nonlinear Schrödinger Equation

被引:0
|
作者
V. M. Volkov
N. P. Matsuka
机构
[1] National Academy of Sciences,Institute for Applied Mathematics
来源
Differential Equations | 2001年 / 37卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:957 / 960
页数:3
相关论文
共 50 条
  • [41] Solitons for a generalized variable-coefficient nonlinear Schrdinger equation
    王欢
    李彪
    Chinese Physics B, 2011, 20 (04) : 12 - 19
  • [42] Madelung fluid description on a generalized mixed nonlinear Schrödinger equation
    Xing Lü
    Nonlinear Dynamics, 2015, 81 : 239 - 247
  • [43] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [44] Exact analytical solution of Schrödinger equation for a generalized noncentral potential
    Hale Karayer
    Dogan Demirhan
    The European Physical Journal Plus, 137
  • [45] Numerical study of generalized 2-D nonlinear Schr?dinger equation using Kansa method
    Pathak, Maheshwar
    Joshi, Pratibha
    Nisar, Kottakkaran Sooppy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 200 : 186 - 198
  • [46] Generalized solution to multidimensional cubic Schrödinger equation with delta potential
    Nevena Dugandžija
    Marko Nedeljkov
    Monatshefte für Mathematik, 2019, 190 : 481 - 499
  • [47] A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    Journal of Mathematical Chemistry, 2009, 46 : 621 - 651
  • [48] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [49] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [50] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40