Accelerating the cubic regularization of Newton’s method on convex problems

被引:0
|
作者
Yu. Nesterov
机构
[1] Catholic University of Louvain (UCL),Center for Operations Research and Econometrics (CORE)
来源
Mathematical Programming | 2008年 / 112卷
关键词
Convex optimization; Unconstrained minimization; Newton’s method; Cubic regularization; Worst-case complexity; Global complexity bounds; Non-degenerate problems; Condition number; 49M15; 49M37; 58C15; 90C25; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose an accelerated version of the cubic regularization of Newton’s method (Nesterov and Polyak, in Math Program 108(1): 177–205, 2006). The original version, used for minimizing a convex function with Lipschitz-continuous Hessian, guarantees a global rate of convergence of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big({1 \over k^2}\big)$$\end{document}, where k is the iteration counter. Our modified version converges for the same problem class with order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big({1 \over k^3}\big)$$\end{document}, keeping the complexity of each iteration unchanged. We study the complexity of both schemes on different classes of convex problems. In particular, we argue that for the second-order schemes, the class of non-degenerate problems is different from the standard class.
引用
收藏
页码:159 / 181
页数:22
相关论文
共 50 条