Accelerating the cubic regularization of Newton’s method on convex problems

被引:0
|
作者
Yu. Nesterov
机构
[1] Catholic University of Louvain (UCL),Center for Operations Research and Econometrics (CORE)
来源
Mathematical Programming | 2008年 / 112卷
关键词
Convex optimization; Unconstrained minimization; Newton’s method; Cubic regularization; Worst-case complexity; Global complexity bounds; Non-degenerate problems; Condition number; 49M15; 49M37; 58C15; 90C25; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose an accelerated version of the cubic regularization of Newton’s method (Nesterov and Polyak, in Math Program 108(1): 177–205, 2006). The original version, used for minimizing a convex function with Lipschitz-continuous Hessian, guarantees a global rate of convergence of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big({1 \over k^2}\big)$$\end{document}, where k is the iteration counter. Our modified version converges for the same problem class with order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big({1 \over k^3}\big)$$\end{document}, keeping the complexity of each iteration unchanged. We study the complexity of both schemes on different classes of convex problems. In particular, we argue that for the second-order schemes, the class of non-degenerate problems is different from the standard class.
引用
收藏
页码:159 / 181
页数:22
相关论文
共 50 条
  • [1] Accelerating the cubic regularization of Newton's method on convex problems
    Nesterov, Yu.
    MATHEMATICAL PROGRAMMING, 2008, 112 (01) : 159 - 181
  • [2] Accelerating Adaptive Cubic Regularization of Newton's Method via Random Sampling
    Chen, Xi
    Jiang, Bo
    Lin, Tianyi
    Zhang, Shuzhong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [3] Accelerating Adaptive Cubic Regularization of Newton's Method via Random Sampling
    Chen, Xi
    Jiang, Bo
    Lin, Tianyi
    Zhang, Shuzhong
    Journal of Machine Learning Research, 2022, 23
  • [4] Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method
    Doikov, Nikita
    Nesterov, Yurii
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (01) : 317 - 339
  • [5] Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method
    Nikita Doikov
    Yurii Nesterov
    Journal of Optimization Theory and Applications, 2021, 189 : 317 - 339
  • [6] A cubic regularization of Newton's method with finite difference Hessian approximations
    Grapiglia, G. N.
    Goncalves, M. L. N.
    Silva, G. N.
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 607 - 630
  • [7] A cubic regularization of Newton’s method with finite difference Hessian approximations
    G. N. Grapiglia
    M. L. N. Gonçalves
    G. N. Silva
    Numerical Algorithms, 2022, 90 : 607 - 630
  • [8] Cubic regularization of Newton method and its global performance
    Yurii Nesterov
    B.T. Polyak
    Mathematical Programming, 2006, 108 : 177 - 205
  • [9] Cubic regularization of Newton method and its global performance
    Nesterov, Yurii
    Polyak, B. T.
    MATHEMATICAL PROGRAMMING, 2006, 108 (01) : 177 - 205
  • [10] Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems
    Yamakawa, Yuya
    Yamashita, Nobuo
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 491