Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs

被引:0
|
作者
Rainer Buckdahn
Ying Hu
Shige Peng
机构
[1] Département de Mathématiques,
[2] Université de Bretagne Occidentale,undefined
[3] F-29285 Brest Cédex,undefined
[4] France,undefined
[5] Institut de Recherche Mathématique de Rennes,undefined
[6] Université de Rennes 1,undefined
[7] Campus de Beaulieu,undefined
[8] F-35042 Rennes Cedex,undefined
[9] France e-mail: hu@maths.univ-rennes1.fr ,undefined
[10] Mathematics Department,undefined
[11] Shandong University,undefined
[12] 250100 Jinan,undefined
[13] Shandong,undefined
[14] China ,undefined
关键词
Viscosity Solution; Main Tool; Probabilistic Approach; Homogenization Problem; Parabolic PDEs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the probabilistic approach to homogenization problems of viscosity solutions of systems of semilinear parabolic PDEs. Our main tool is the nonlinear Feynman-Kac formula.
引用
收藏
页码:395 / 411
页数:16
相关论文
共 50 条
  • [21] VISCOSITY SOLUTIONS OF FULLY NONLINEAR PARABOLIC PATH DEPENDENT PDES: PART I
    Ekren, Ibrahim
    Touzi, Nizar
    Zhang, Jianfeng
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1212 - 1253
  • [22] VISCOSITY SOLUTIONS OF FULLY NONLINEAR PARABOLIC PATH DEPENDENT PDES: PART II
    Ekren, Ibrahim
    Touzi, Nizar
    Zhang, Jianfeng
    ANNALS OF PROBABILITY, 2016, 44 (04): : 2507 - 2553
  • [23] A Probabilistic Approach to Large Time Behaviour of Viscosity Solutions of Parabolic Equations with Neumann Boundary Conditions
    Hu, Ying
    Madec, Pierre-Yves
    APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 74 (02): : 345 - 374
  • [24] A Probabilistic Approach to Large Time Behaviour of Viscosity Solutions of Parabolic Equations with Neumann Boundary Conditions
    Ying Hu
    Pierre-Yves Madec
    Applied Mathematics & Optimization, 2016, 74 : 345 - 374
  • [25] Probabilistic approach for systems of second order quasi-linear parabolic PDEs
    Wang, Jinxia
    Zhang, Xicheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 676 - 694
  • [26] UNIQUENESS OF VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER PARABOLIC PDES
    DONG, G
    BIAN, BJ
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1990, 11 (02) : 156 - 170
  • [27] COMPARISON OF VISCOSITY SOLUTIONS OF FULLY NONLINEAR DEGENERATE PARABOLIC PATH-DEPENDENT PDEs
    Ren, Zhenjie
    Touzi, Nizar
    Zhang, Jianfeng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 4093 - 4116
  • [28] Homogenization of a quasilinear parabolic equation with vanishing viscosity
    Dalibard, Anne-Laure
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 133 - 154
  • [29] ON VISCOSITY SOLUTIONS OF PATH DEPENDENT PDES
    Ekren, Ibrahim
    Keller, Christian
    Touzi, Nizar
    Zhang, Jianfeng
    ANNALS OF PROBABILITY, 2014, 42 (01): : 204 - 236
  • [30] A PROBABILISTIC NUMERICAL METHOD FOR FULLY NONLINEAR PARABOLIC PDES
    Fahim, Arash
    Touzi, Nizar
    Warin, Xavier
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (04): : 1322 - 1364