Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs

被引:0
|
作者
Rainer Buckdahn
Ying Hu
Shige Peng
机构
[1] Département de Mathématiques,
[2] Université de Bretagne Occidentale,undefined
[3] F-29285 Brest Cédex,undefined
[4] France,undefined
[5] Institut de Recherche Mathématique de Rennes,undefined
[6] Université de Rennes 1,undefined
[7] Campus de Beaulieu,undefined
[8] F-35042 Rennes Cedex,undefined
[9] France e-mail: hu@maths.univ-rennes1.fr ,undefined
[10] Mathematics Department,undefined
[11] Shandong University,undefined
[12] 250100 Jinan,undefined
[13] Shandong,undefined
[14] China ,undefined
关键词
Viscosity Solution; Main Tool; Probabilistic Approach; Homogenization Problem; Parabolic PDEs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the probabilistic approach to homogenization problems of viscosity solutions of systems of semilinear parabolic PDEs. Our main tool is the nonlinear Feynman-Kac formula.
引用
收藏
页码:395 / 411
页数:16
相关论文
共 50 条
  • [1] Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs
    Buckdahn, Rainer
    Hu, Ying
    Peng, Shige
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (04): : 395 - 411
  • [2] Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs
    Hu, Mingshang
    Wang, Falei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 141 : 139 - 171
  • [3] Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients:: A probabilistic approach
    Pardoux, É
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) : 498 - 520
  • [4] On the Relationship Between Viscosity and Distribution Solutions for Nonlinear Neumann Type PDEs: The Probabilistic Approach
    Ren, Jiagang
    Wang, Shoutian
    Wu, Jing
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (01):
  • [5] Viscosity Solutions to Second Order Parabolic PDEs on Riemannian Manifolds
    Xuehong Zhu
    Acta Applicandae Mathematicae, 2011, 115 : 279 - 290
  • [6] Viscosity Solutions to Second Order Parabolic PDEs on Riemannian Manifolds
    Zhu, Xuehong
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (03) : 279 - 290
  • [7] DECAY ESTIMATES OF VISCOSITY SOLUTIONS OF NONLINEAR PARABOLIC PDES AND APPLICATIONS
    Marchi, Silvana
    MATEMATICHE, 2014, 69 (01): : 109 - 123
  • [8] Stability of solutions of parabolic PDEs with random drift and viscosity limit
    Deck, T.
    Potthoff, J.
    Våge, G.
    Watanabe, H.
    Applied Mathematics and Optimization, 40 (03): : 393 - 406
  • [9] Stability of solutions of parabolic PDEs with random drift and viscosity limit
    Deck, T
    Potthoff, J
    Våge, G
    Watanabe, H
    APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 40 (03): : 393 - 406
  • [10] Stability of Solutions of Parabolic PDEs with Random Drift and Viscosity Limit
    T. Deck
    J. Potthoff
    G. Våge
    H. Watanabe
    Applied Mathematics and Optimization, 1999, 40 : 393 - 406