Fuzzy min–max neural networks: from classification to regression

被引:14
|
作者
R. Tagliaferri
A. Eleuteri
M. Meneganti
F. Barone
机构
[1] INFM,
[2] Unita` di Salerno and University of Salerno Soft-computing Lab,undefined
[3] DMI via S. Allende,undefined
[4] 84081 Baronissi (Sa),undefined
[5] Italy E-mail: robtag@unisa.it,undefined
[6] INFN,undefined
[7] sez. di Napoli and University of Naples Dip. di Scienze Fisiche via Cintia,undefined
[8] I-80126,undefined
[9] Naples,undefined
[10] Italy,undefined
[11] Alenia Radar Systems,undefined
[12] Naples,undefined
[13] Italy,undefined
关键词
Keywords Fuzzy neural networks; Fuzzy min-max hyperboxes; Classification; Regression;
D O I
10.1007/s005000000067
中图分类号
学科分类号
摘要
 In this paper we show two new learning algorithms for a fuzzy min–max neural network. The top down fuzzy min–max (TDFMM) algorithm modifies the classic Simpson's learning algorithm overcoming its main difficulties: the dependence on the presentation order of the patterns and the poor resolutive adaptation to the characteristics of input space. The top down fuzzy min–max regressor (TDFMMR) algorithm extends our neural network to solve regression problems by using a hybrid fuzzy classifier and a gradient descent algorithm.
引用
下载
收藏
页码:69 / 76
页数:7
相关论文
共 50 条
  • [31] Fuzzy min-max neural networks: a bibliometric and social network analysis
    Kenger, Omer Nedim
    Ozceylan, Eren
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (07): : 5081 - 5111
  • [32] A convergent smoothing algorithm for training max-min fuzzy neural networks
    Li, Long
    Qiao, Zhijun
    Liu, Yan
    Chen, Yuan
    NEUROCOMPUTING, 2017, 260 : 404 - 410
  • [33] Color image segmentation using fuzzy min-max neural networks
    Estévez, PA
    Flores, RJ
    Perez, CA
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 3052 - 3057
  • [34] A smoothing algorithm with momentum for training max-min fuzzy neural networks
    Li, Long
    Xiao, Rui
    Zhang, Guohui
    International Journal of Applied Mathematics and Statistics, 2013, 47 (17): : 408 - 415
  • [35] Max-min fuzzy Hopfield neural networks and an efficient learning algorithm
    Liu, PY
    FUZZY SETS AND SYSTEMS, 2000, 112 (01) : 41 - 49
  • [36] Evolving Granular Fuzzy Min-Max Regression
    Porto, Alisson
    Gomide, Fernando
    FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 162 - 171
  • [37] Pattern Classification using Modified Enhanced Fuzzy Min-Max Neural Network
    Landge, Chaitrali B.
    Shinde, Swati V.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2016,
  • [38] Adaptive Expansion Algorithm for Fuzzy Min-Max Neural Network in Pattern Classification
    Arvindrao, Vaidya Aparna
    Kolapwar, Pranjala G.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 741 - 744
  • [39] A weighted fuzzy min-max neural network for pattern classification and feature extraction
    Kim, HJ
    Ryu, TW
    Nguyen, TT
    Lim, JS
    Gupta, S
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 4, 2004, 3046 : 791 - 798
  • [40] A modified Fuzzy Min-Max neural network and its application to fault classification
    Quteishat, Anas M.
    Lim, Chee Peng
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS: RECENT AND EMERGING METHODS AND TECHNIQUES, 2007, 39 : 179 - +