Euclidean ideal classes in Galois number fields of odd prime degree

被引:0
|
作者
V. Kumar Murty
J. Sivaraman
机构
[1] University of Toronto,Department of Mathematics
[2] Chennai Mathematical Institute H1,undefined
来源
关键词
Euclidean ideal classes; Genus fields; Hilbert class fields; Application of sieve methods; 11A05; 13F07; 11R04; 11R37; 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
Weinberger [16] in 1972, proved that the ring of integers of a number field with unit rank at least 1 is a principal ideal domain if and only if it is a Euclidean domain, provided the generalised Riemann hypothesis holds. Lenstra [13], extended the notion of Euclidean domains in order to capture Dedekind domains with finite cyclic class group and proved an analogous theorem in this setup. More precisely, he showed that the class group of the ring of integers of a number field with unit rank at least 1 is cyclic if and only if it has a Euclidean ideal class, provided the generalised Riemann hypothesis holds. The aim of this paper is to show the following. Suppose that K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {K}}}_1$$\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {K}}}_2$$\end{document} are two Galois number fields of odd prime degree with cyclic class groups and Hilbert class fields that are abelian over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q}$$\end{document}. If K1K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {K}}}_1{{\mathbf {K}}}_2$$\end{document} is ramified over Ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {K}}}_i$$\end{document}, then at least one Ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {K}}}_i$$\end{document} (i∈{1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in \{1,2\}$$\end{document}) must have a Euclidean ideal class.
引用
收藏
相关论文
共 50 条
  • [21] Algebraic lattices coming from Z-modules generalizing ramified prime ideals in odd prime degree cyclic number fields
    de Andrade, Antonio Aparecido
    de Araujo, Robson Ricardo
    da Nobrega Neto, Trajano Pires
    Bastos, Jefferson Luiz Rocha
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024,
  • [22] Integral basis of pure prime degree number fields
    Jakhar, Anuj
    Sangwan, Neeraj
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 309 - 314
  • [23] ISOGENIES OF PRIME DEGREE OVER NUMBER-FIELDS
    MOMOSE, F
    COMPOSITIO MATHEMATICA, 1995, 97 (03) : 329 - 348
  • [24] Integral basis of pure prime degree number fields
    Anuj Jakhar
    Neeraj Sangwan
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 309 - 314
  • [25] Density of integers which are discriminants of cyclic fields of odd prime degree
    Blair K. Spearman
    Kenneth S. Williams
    Archiv der Mathematik, 2004, 83 : 507 - 513
  • [26] Density of integers which are discriminants of cyclic fields of odd prime degree
    Spearman, BK
    Williams, KS
    ARCHIV DER MATHEMATIK, 2004, 83 (06) : 507 - 513
  • [27] GENUS FIELD OF AN ALGEBRAIC NUMBER-FIELD OF ODD PRIME DEGREE
    ISHIDA, M
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1975, 27 (02) : 289 - 293
  • [28] Ideal Class Groups of Number Fields Associated to Modular Galois Representations
    Dainobu, Naoto
    TOKYO JOURNAL OF MATHEMATICS, 2024, 47 (01) : 61 - 87
  • [29] Steinitz classes of tamely ramified Galois extensions of algebraic number fields
    Cobbe, Alessandro
    JOURNAL OF NUMBER THEORY, 2010, 130 (05) : 1129 - 1154
  • [30] Euclidean algorithm in Galois quartic fields
    Srinivas, K.
    Subramani, M.
    Sangale, Usha K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 26 - 26