共 50 条
Euclidean ideal classes in Galois number fields of odd prime degree
被引:0
|作者:
V. Kumar Murty
J. Sivaraman
机构:
[1] University of Toronto,Department of Mathematics
[2] Chennai Mathematical Institute H1,undefined
来源:
关键词:
Euclidean ideal classes;
Genus fields;
Hilbert class fields;
Application of sieve methods;
11A05;
13F07;
11R04;
11R37;
11N36;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Weinberger [16] in 1972, proved that the ring of integers of a number field with unit rank at least 1 is a principal ideal domain if and only if it is a Euclidean domain, provided the generalised Riemann hypothesis holds. Lenstra [13], extended the notion of Euclidean domains in order to capture Dedekind domains with finite cyclic class group and proved an analogous theorem in this setup. More precisely, he showed that the class group of the ring of integers of a number field with unit rank at least 1 is cyclic if and only if it has a Euclidean ideal class, provided the generalised Riemann hypothesis holds. The aim of this paper is to show the following. Suppose that K1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbf {K}}}_1$$\end{document} and K2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbf {K}}}_2$$\end{document} are two Galois number fields of odd prime degree with cyclic class groups and Hilbert class fields that are abelian over Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb Q}$$\end{document}. If K1K2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbf {K}}}_1{{\mathbf {K}}}_2$$\end{document} is ramified over Ki\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbf {K}}}_i$$\end{document}, then at least one Ki\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbf {K}}}_i$$\end{document} (i∈{1,2}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$i \in \{1,2\}$$\end{document}) must have a Euclidean ideal class.
引用
收藏
相关论文