Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons

被引:0
|
作者
Tim Jarsky
Alex Roxin
William L Kath
Nelson Spruston
机构
[1] Institute for Neuroscience,Department of Neurobiology and Physiology
[2] Northwestern University,Department of Engineering Science and Applied Mathematics
[3] Northwestern University,undefined
[4] Unité Mixte de Recherche 8119,undefined
[5] Centre Nationale de la Recherche Scientifique,undefined
[6] Neurophysics and Physiology,undefined
[7] Université René Descartes,undefined
[8] 45 Rue des Saints Pères,undefined
来源
Nature Neuroscience | 2005年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The perforant-path projection to the hippocampus forms synapses in the apical tuft of CA1 pyramidal neurons. We used computer modeling to examine the function of these distal synaptic inputs, which led to three predictions that we confirmed in experiments using rat hippocampal slices. First, activation of CA1 neurons by the perforant path is limited, a result of the long distance between these inputs and the soma. Second, activation of CA1 neurons by the perforant path depends on the generation of dendritic spikes. Third, the forward propagation of these spikes is unreliable, but can be facilitated by modest activation of Schaffer-collateral synapses in the upper apical dendrites. This 'gating' of dendritic spike propagation may be an important activation mode of CA1 pyramidal neurons, and its modulation by neurotransmitters or long-term, activity-dependent plasticity may be an important feature of dendritic integration during mnemonic processing in the hippocampus.
引用
收藏
页码:1667 / 1676
页数:9
相关论文
共 50 条