Signal Contrastive Enhanced Graph Collaborative Filtering for Recommendation

被引:0
|
作者
Zhi-Yuan Li
Man-Sheng Chen
Yuefang Gao
Chang-Dong Wang
机构
[1] Sun Yat-sen University,School of Computer Science and Engineering
[2] Ministry of Education,Key Laboratory of Machine Intelligence and Advanced Computing
[3] South China Agricultural University,College of Mathematics and Informatics
来源
关键词
Recommendation; Collaborative filtering; Contrastive learning; Graph signals; Hypergraph learning;
D O I
暂无
中图分类号
学科分类号
摘要
Graph collaborative filtering methods have shown great performance improvements compared with deep neural network-based models. However, these methods suffer from data sparsity and data noise problems. To address these issues, we propose a new contrastive learning-based graph collaborative filtering method to learn more robust representations. The proposed method is called signal contrastive enhanced graph collaborative filtering (SC-GCF), which conducts contrastive learning on graph signals. It has been proved that graph neural networks correspond to low-pass filters on the graph signals from the graph convolution perspective. Different from the previous contrastive learning-based methods, we first pay attention to the diversity of graph signals to directly optimize the informativeness of the graph signals. We introduce a hypergraph module to strengthen the representation learning ability of graph neural networks. The hypergraph learning module utilizes a learnable hypergraph structure to model the latent global dependency relations that graph neural networks cannot depict. Experiments are conducted on four public datasets, and the results show significant improvements compared with the state-of-the-art methods, which confirms the importance of considering signal-level contrastive learning and hypergraph learning.
引用
下载
收藏
页码:318 / 328
页数:10
相关论文
共 50 条
  • [41] Neighbor importance-aware graph collaborative filtering for item recommendation
    Wang, Qingxian
    Wu, Suqiang
    Bai, Yanan
    Liu, Quanliang
    Shi, Xiaoyu
    NEUROCOMPUTING, 2023, 549
  • [42] Personalized Course Recommendation System Fusing with Knowledge Graph and Collaborative Filtering
    Xu, Gongwen
    Jia, Guangyu
    Shi, Lin
    Zhang, Zhijun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [43] A Hybrid Recommendation Model Based on Weighted Bipartite Graph and Collaborative Filtering
    Hu, Xiaohui
    Mai, Zichao
    Zhang, Haolan
    Xue, Yun
    Zhou, Weixin
    Chen, Xin
    2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE WORKSHOPS (WIW 2016), 2016, : 119 - 122
  • [44] API recommendation for Mashup creation based on neural graph collaborative filtering
    Lian, Sixian
    Tang, Mingdong
    CONNECTION SCIENCE, 2022, 34 (01) : 124 - 138
  • [45] A Graph Convolution Collaborative Filtering Integrating Social Relations Recommendation Method
    Ma, Min
    Cao, Qiong
    Liu, Xiaoyang
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [46] LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning
    Liu, Xinru
    Hao, Yongjing
    Zhao, Lei
    Liu, Guanfeng
    Sheng, Victor S.
    Zhao, Pengpeng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (07)
  • [47] Negative Samples Selection Can Improve Graph Contrastive Learning in Collaborative Filtering
    Shao, Yifan
    Cai, Xu
    Gu, Fangming
    Li, Ximing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 456 - 467
  • [48] GDSRec: Graph-Based Decentralized Collaborative Filtering for Social Recommendation
    Chen, Jiajia
    Xin, Xin
    Liang, Xianfeng
    He, Xiangnan
    Liu, Jun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4813 - 4824
  • [49] Modeling Multi-View Interactions with Contrastive Graph Learning for Collaborative Filtering
    Cheng, Zhangtao
    Walker, Joojo
    Zhong, Ting
    Zhou, Fan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [50] An Enhanced Neural Graph based Collaborative Filtering with Item Knowledge Graph
    Sangeetha, M.
    Thiagarajan, Meera Devi
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (04)