Frattini and related subgroups of mapping class groups

被引:0
|
作者
G. Masbaum
A. W. Reid
机构
[1] Equipe Topologie et Géométrie Algébriques,Institut de Mathématiques de Jussieu–PRG (UMR 7586 du CNRS)
[2] University of Texas at Austin,Department of Mathematics
关键词
Normal Subgroup; STEKLOV Institute; Simple Group; Maximal Subgroup; Mapping Class Group;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γg,b denote the orientation-preserving mapping class group of a closed orientable surface of genus g with b punctures. For a group G let Φf(G) denote the intersection of all maximal subgroups of finite index in G. Motivated by a question of Ivanov as to whether Φf(G) is nilpotent when G is a finitely generated subgroup of Γg,b, in this paper we compute Φf(G) for certain subgroups of Γg,b. In particular, we answer Ivanov’s question in the affirmative for these subgroups of Γg,b.
引用
下载
收藏
页码:143 / 152
页数:9
相关论文
共 50 条
  • [21] NEAR FRATTINI SUBGROUPS OF DIRECT PRODUCTS OF GROUPS
    RILES, JB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (JUL): : 239 - 244
  • [22] Frattini subgroups of hyperbolic-like groups
    Goffer, G.
    Osin, D.
    Rybak, E.
    JOURNAL OF ALGEBRA, 2024, 658 : 22 - 37
  • [23] Commensurability of geometric subgroups of mapping class groups
    Stukow, Michal
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 117 - 142
  • [24] Zero entropy subgroups of mapping class groups
    Franks, John
    Parwani, Kamlesh
    GEOMETRIAE DEDICATA, 2017, 186 (01) : 27 - 38
  • [25] Finite index subgroups of mapping class groups
    Berrick, A. J.
    Gebhardt, V.
    Paris, L.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 575 - 599
  • [26] Bounded cohomology of subgroups of mapping class groups
    Bestvina, Mladen
    Fujiwara, Koji
    GEOMETRY & TOPOLOGY, 2002, 6 : 69 - 89
  • [27] Commensurability of geometric subgroups of mapping class groups
    Michal Stukow
    Geometriae Dedicata, 2009, 143 : 117 - 142
  • [28] FREE SUBGROUPS OF SURFACE MAPPING CLASS GROUPS
    Anderson, James W.
    Aramayona, Javier
    Shackleton, Kenneth J.
    CONFORMAL GEOMETRY AND DYNAMICS, 2007, 11 : 44 - 55
  • [29] FRATTINI SUBGROUPS OF 3-MANIFOLD GROUPS
    ALLENBY, RBJT
    BOLER, J
    EVANS, B
    MOSER, LE
    TANG, CY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) : 275 - 300
  • [30] FRATTINI SUBGROUPS OF FINITE P-GROUPS
    LANGE, GL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A90 - A90