Frattini and related subgroups of mapping class groups

被引:0
|
作者
G. Masbaum
A. W. Reid
机构
[1] Equipe Topologie et Géométrie Algébriques,Institut de Mathématiques de Jussieu–PRG (UMR 7586 du CNRS)
[2] University of Texas at Austin,Department of Mathematics
关键词
Normal Subgroup; STEKLOV Institute; Simple Group; Maximal Subgroup; Mapping Class Group;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γg,b denote the orientation-preserving mapping class group of a closed orientable surface of genus g with b punctures. For a group G let Φf(G) denote the intersection of all maximal subgroups of finite index in G. Motivated by a question of Ivanov as to whether Φf(G) is nilpotent when G is a finitely generated subgroup of Γg,b, in this paper we compute Φf(G) for certain subgroups of Γg,b. In particular, we answer Ivanov’s question in the affirmative for these subgroups of Γg,b.
引用
收藏
页码:143 / 152
页数:9
相关论文
共 50 条