Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition

被引:0
|
作者
Marek Fila
Kazuhiro Ishige
Tatsuki Kawakami
机构
[1] Comenius University,Department of Applied Mathematics and Statistics
[2] Tohoku University,Mathematical Institute
[3] Osaka Prefecture University,Department of Mathematical Sciences
关键词
35J91; 35B40; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear elliptic equation -Δu=up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u=u^p$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, u=u(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=u(x,t)$$\end{document}, x∈R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {\mathbb R}^N_+$$\end{document}, t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, with a dynamical boundary condition. We show that, for p<(N+1)/(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<(N+1)/(N-1)$$\end{document}, there exist no nontrivial nonnegative local-in-time solutions. Furthermore, in the case p>(N+1)/(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>(N+1)/(N-1)$$\end{document}, we determine the optimal slow decay rate at spatial infinity for initial data giving rise to global bounded positive solutions.
引用
收藏
页码:2059 / 2078
页数:19
相关论文
共 50 条