Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition

被引:7
|
作者
Fila, Marek [1 ]
Ishige, Kazuhiro [2 ]
Kawakami, Tatsuki [3 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
[2] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[3] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
来源
基金
日本学术振兴会;
关键词
Semilinear elliptic equation; Dynamical boundary condition; Minimal solutions; Phragmen-Lindelof theorem; LARGE-TIME BEHAVIOR; POSITIVE SOLUTIONS; LAPLACE EQUATION; GLOBAL-SOLUTIONS; BLOW-UP; EXISTENCE; SYSTEMS;
D O I
10.1016/j.matpur.2015.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of positive solutions of a semilinear elliptic equation with a linear dynamical boundary condition. We establish the semigroup property for minimal solutions, show that every local-in-time solution can be extended globally, and reveal a relationship between minimal solutions of the time-dependent problem and minimal solutions of a corresponding stationary problem. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:788 / 809
页数:22
相关论文
共 50 条