Global Well-Posedness for the Full Compressible Navier-Stokes Equations

被引:0
|
作者
Jinlu Li
Zhaoyang Yin
Xiaoping Zhai
机构
[1] Gannan Normal University,School of Mathematics and Computer Sciences
[2] Sun Yat-sen University,Department of Mathematics
[3] Macau University of Science and Technology,Faculty of Information Technology
[4] Guangdong University of Technology,Department of Mathematics
[5] Shenzhen University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
compressible Navier-Stokes equations; global well-posedness; Friedrich’s method; compactness arguments; 35Q35; 35K65; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the Cauchy problem regarding the full compressible Navier-Stokes equations in ℝd (d = 2, 3). By exploiting the intrinsic structure of the equations and using harmonic analysis tools (especially the Littlewood-Paley theory), we prove the global solutions to this system with small initial data restricted in the Sobolev spaces. Moreover, the initial temperature may vanish at infinity.
引用
收藏
页码:2131 / 2148
页数:17
相关论文
共 50 条
  • [31] Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (03) : 351 - 404
  • [32] Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum
    Fang, Li
    Guo, Zhenhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [33] WELL-POSEDNESS RESULTS FOR THE NAVIER-STOKES EQUATIONS IN THE ROTATIONAL FRAMEWORK
    Hieber, Matthias
    Monniaux, Sylvie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) : 5143 - 5151
  • [34] HYPERBOLIC NAVIER-STOKES EQUATIONS I: LOCAL WELL-POSEDNESS
    Racke, Reinhard
    Saal, Juergen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 195 - 215
  • [35] Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces
    Khai D.Q.
    Acta Mathematica Vietnamica, 2017, 42 (3) : 431 - 443
  • [36] Local well-posedness to the vacuum free boundary problem of full compressible Navier-Stokes equations in R3
    Chen, Yuhui
    Huang, Jingchi
    Wang, Chao
    Wei, Zhengzhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 734 - 785
  • [37] INHOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS: WELL-POSEDNESS AND SENSITIVITY ANALYSIS
    Plotnikov, P. I.
    Ruban, E. V.
    Sokolowski, J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) : 1152 - 1200
  • [38] Global well-posedness of the 1d compressible Navier-Stokes system with rough data
    Chen, Ke
    Ha, Ly Kim
    Hu, Ruilin
    Nguyen, Hung
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 425 - 453
  • [39] GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE INHOMOGENEOUS NAVIER-STOKES EQUATIONS
    Qian, Chenyin
    Zhang, Ping
    METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (04) : 507 - 546
  • [40] Global Well-Posedness for Inhomogeneous Navier-Stokes Equations in Endpoint Critical Besov Spaces
    Ri, Myong-Hwan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)