Survey on clothing image retrieval with cross-domain

被引:0
|
作者
Chen Ning
Yang Di
Li Menglu
机构
[1] Xi’an Polytechnic University,
来源
关键词
Cross-domain clothing retrieval; Critical region recognition; Deep metric learning; Deep learning; [inline-graphic not available: see fulltext];
D O I
暂无
中图分类号
学科分类号
摘要
The paper summarizes the research progress on critical region recognition and deep metric learning to achieve accurate clothing image retrieval in cross-domain situations. Critical region recognition is of great value for the clothing feature extraction, effectively improving retrieval accuracy. The accuracy will decrease when solving difficult samples with similar features but different categories. Nowadays, deep metric learning is an effective way to solve this problem, which utilizes the optimization of different loss functions and ensemble network to strengthen the discrimination of clothing features. Therefore, through comparison of the experimental results of different algorithms and analysis of the accuracy of cross-domain clothing retrieval, it is demonstrated that the improvement of the retrieval accuracy in the future mainly depends on clothing important feature extraction and clothing feature discrimination.
引用
收藏
页码:5531 / 5544
页数:13
相关论文
共 50 条
  • [1] Survey on clothing image retrieval with cross-domain
    Chen Ning
    Yang Di
    Li Menglu
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (06) : 5531 - 5544
  • [2] Cross-Domain Clothing Retrieval with Attention Model
    Liu, Yujie
    Wang, Wenya
    Li, Zongmin
    Li, Hua
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (06): : 894 - 902
  • [3] Cross-domain fashion image retrieval
    Gajic, Bojana
    Baldrich, Ramon
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1950 - 1952
  • [4] Cross-domain image retrieval: methods and applications
    Xiaoping Zhou
    Xiangyu Han
    Haoran Li
    Jia Wang
    Xun Liang
    [J]. International Journal of Multimedia Information Retrieval, 2022, 11 : 199 - 218
  • [5] Cross-Domain Image Retrieval with Attention Modeling
    Ji, Xin
    Wang, Wei
    Zhang, Meihui
    Yang, Yang
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1654 - 1662
  • [6] Cross-domain image retrieval: methods and applications
    Zhou, Xiaoping
    Han, Xiangyu
    Li, Haoran
    Wang, Jia
    Liang, Xun
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (03) : 199 - 218
  • [7] ClothingNet: Cross-Domain Clothing Retrieval With Feature Fusion and Quadruplet Loss
    Miao, Yongwei
    Li, Gaoyi
    Bao, Chen
    Zhang, Jiajing
    Wang, Jinrong
    [J]. IEEE ACCESS, 2020, 8 : 142669 - 142679
  • [8] Deep sketch feature for cross-domain image retrieval
    Wang, Xinggang
    Duan, Xiong
    Bai, Xiang
    [J]. NEUROCOMPUTING, 2016, 207 : 387 - 397
  • [9] USING CLASSIFIER DISCREPANCY FOR CROSS-DOMAIN IMAGE RETRIEVAL
    Zhao, Longjiao
    Wang, Yu
    Kato, Jien
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3314 - 3318
  • [10] A Parameter Partial-sharing CNN Architecture for Cross-Domain Clothing Retrieval
    Xiong, Yichao
    Liu, Ning
    Xu, Zhe
    Zhang, Ya
    [J]. 2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,