USING CLASSIFIER DISCREPANCY FOR CROSS-DOMAIN IMAGE RETRIEVAL

被引:0
|
作者
Zhao, Longjiao [1 ,2 ]
Wang, Yu [3 ]
Kato, Jien [4 ]
机构
[1] Nagoya Univ, Nagoya, Aichi, Japan
[2] Honda Innovat Tokyo, Tokyo, Japan
[3] Hitotsubashi Univ, Kunitachi, Tokyo, Japan
[4] Ritsumeikan Univ, Kyoto, Japan
关键词
Convolutional neural network; cross-domain image retrieval; multi-branch network;
D O I
10.1109/ICIP49359.2023.10222605
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, cross-domain image retrieval (CDIM) has garnered considerable interest. The primary difficulty of CDIM is the domain gap, which makes it hard for the system to retrieve two photos that belong to the same category but have distinct domains. In this paper, we provide a novel multi-branch network employing the quintuplet structure to minimize retrieval loss and classifier discrepancy to minimize domain loss. Using three public datasets, we test the proposed method for zero-shot sketch-based image retrieval, which is one of CDIM's application tasks. Experiments validated the proposed method's state-of-the-art performance on the majority of datasets.
引用
收藏
页码:3314 / 3318
页数:5
相关论文
共 50 条
  • [1] Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy
    Zhang, Yong-Chao
    Li, Qi
    Ren, Zhao-Hui
    Zhou, Shi-Hua
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (03): : 367 - 372
  • [2] Cross-domain fashion image retrieval
    Gajic, Bojana
    Baldrich, Ramon
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1950 - 1952
  • [3] Survey on clothing image retrieval with cross-domain
    Chen Ning
    Yang Di
    Li Menglu
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (06) : 5531 - 5544
  • [4] Cross-domain image retrieval: methods and applications
    Xiaoping Zhou
    Xiangyu Han
    Haoran Li
    Jia Wang
    Xun Liang
    [J]. International Journal of Multimedia Information Retrieval, 2022, 11 : 199 - 218
  • [5] Cross-Domain Image Retrieval with Attention Modeling
    Ji, Xin
    Wang, Wei
    Zhang, Meihui
    Yang, Yang
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1654 - 1662
  • [6] Cross-domain image retrieval: methods and applications
    Zhou, Xiaoping
    Han, Xiangyu
    Li, Haoran
    Wang, Jia
    Liang, Xun
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (03) : 199 - 218
  • [7] Survey on clothing image retrieval with cross-domain
    Chen Ning
    Yang Di
    Li Menglu
    [J]. Complex & Intelligent Systems, 2022, 8 : 5531 - 5544
  • [8] Deep sketch feature for cross-domain image retrieval
    Wang, Xinggang
    Duan, Xiong
    Bai, Xiang
    [J]. NEUROCOMPUTING, 2016, 207 : 387 - 397
  • [9] Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval
    Hu, Conghui
    Lee, Gim Hee
    [J]. COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 529 - 544
  • [10] Correspondence-Free Domain Alignment for Unsupervised Cross-Domain Image Retrieval
    Wang, Xu
    Peng, Dezhong
    Yan, Ming
    Hu, Peng
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 10200 - 10208