A Modal Loosely Guarded Fragment of Second-Order Propositional Modal Logic

被引:0
|
作者
Gennady Shtakser
机构
[1] National Academy of Telecommunications,
关键词
Second-order propositional modal logic; Henkin semantics; Loosely guarded fragment; Decidability; Expressive power;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a variant of second-order propositional modal logic interpreted on general (or Henkin) frames, SOPMLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}$$\end{document}, and present a decidable fragment of this logic, SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document}, that preserves important expressive capabilities of SOPMLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}$$\end{document}. SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document} is defined as a modal loosely guarded fragment of SOPMLH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}$$\end{document}. We demonstrate the expressive power of SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document} using examples in which modal operators obtain (a) the epistemic interpretation, (b) the dynamic interpretation. SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document} partially satisfies the principle of non-Fregean logic: two different atomic propositions with the same truth value can have different contents. In SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document}, we also define relating connectives and show that the weak Boethius’ Thesis built using these connectives is a valid formula of SOPMLdecH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SOPML^{\mathcal {H}}_{dec}$$\end{document}.
引用
收藏
页码:511 / 538
页数:27
相关论文
共 50 条