REDUCTION OF SECOND-ORDER LOGIC TO MODAL LOGIC

被引:0
|
作者
THOMASON, SK [1 ]
机构
[1] SIMON FRASER UNIV,BURNABY 2,BRITISH COLUMBI,CANADA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A640 / A640
页数:1
相关论文
共 50 条
  • [1] The Ackermann approach for modal logic, correspondence theory and second-order reduction
    Schmidt, Renate A.
    [J]. JOURNAL OF APPLIED LOGIC, 2012, 10 (01) : 52 - 74
  • [2] Existential second-order logic and modal logic with quantified accessibility relations
    Hella, Lauri
    Kuusisto, Antti
    [J]. INFORMATION AND COMPUTATION, 2016, 247 : 217 - 234
  • [3] A Semantical Analysis of Second-Order Propositional Modal Logic
    Belardinelli, F.
    van der Hoek, W.
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 886 - 892
  • [4] Improved Second-Order Quantifier Elimination in Modal Logic
    Schmidt, Renate A.
    [J]. LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5293 : 375 - 388
  • [5] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 230 - 241
  • [6] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. FUNDAMENTA INFORMATICAE, 2011, 106 (2-4) : 259 - 272
  • [7] A Modal Loosely Guarded Fragment of Second-Order Propositional Modal Logic
    Shtakser, Gennady
    [J]. JOURNAL OF LOGIC LANGUAGE AND INFORMATION, 2023, 32 (03) : 511 - 538
  • [8] A Modal Loosely Guarded Fragment of Second-Order Propositional Modal Logic
    Gennady Shtakser
    [J]. Journal of Logic, Language and Information, 2023, 32 : 511 - 538
  • [9] Modal Deduction in Second-Order Logic and Set Theory - II
    Van Benthem J.
    D'Agostino G.
    Montanari A.
    Policriti A.
    [J]. Studia Logica, 1998, 60 (3) : 387 - 420
  • [10] Second-order propositional modal logic and monadic alternation hierarchies
    Kuusisto, Antti
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2015, 166 (01) : 1 - 28