Plane Bichromatic Trees of Low Degree

被引:0
|
作者
Ahmad Biniaz
Prosenjit Bose
Anil Maheshwari
Michiel Smid
机构
[1] Carleton University,School of Computer Science
来源
关键词
Bichromatic trees; Plane trees; Low-degree trees;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and B be two disjoint sets of points in the plane such that |B|≤|R|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|B|\le |R|$$\end{document}, and no three points of R∪B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\cup B$$\end{document} are collinear. We show that the geometric complete bipartite graph K(R, B) contains a non-crossing spanning tree whose maximum degree is at most max{3,⌈(|R|-1)/|B|⌉+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \,\{3, \lceil (|R|-1)/|B|\rceil + 1\}$$\end{document}; this is the best possible upper bound on the maximum degree. This proves two conjectures made by Kaneko, 1998, and solves an open problem posed by Abellanas et al. at the Graph Drawing Symposium, 1996.
引用
收藏
页码:864 / 885
页数:21
相关论文
共 50 条
  • [21] Constructing plane spanners of bounded degree and low weight
    Bose, P
    Gudmundsson, J
    Smid, M
    [J]. ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 234 - 246
  • [22] Constructing Plane Spanners of Bounded Degree and Low Weight
    Prosenjit Bose
    Joachim Gudmundsson
    Michiel Smid
    [J]. Algorithmica , 2005, 42 : 249 - 264
  • [23] Improved Spanning Ratio for Low Degree Plane Spanners
    Prosenjit Bose
    Darryl Hill
    Michiel Smid
    [J]. Algorithmica, 2018, 80 : 935 - 976
  • [24] On a number of rational points on a plane curve of low degree
    Cheon, Eun Ju
    Homma, Masaaki
    Kim, Seon Jeong
    Lee, Namyong
    [J]. DISCRETE MATHEMATICS, 2017, 340 (06) : 1327 - 1334
  • [25] POINTS OF LOW DEGREE ON SMOOTH PLANE-CURVES
    DEBARRE, O
    KLASSEN, MJ
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1994, 446 : 81 - 87
  • [26] Constructing plane spanners of bounded degree and low weight
    Bose, P
    Gudmundsson, J
    Smid, M
    [J]. ALGORITHMICA, 2005, 42 (3-4) : 249 - 264
  • [27] Low-degree minimal spanning trees in normed spaces
    Martini, H
    Swanepoel, KJ
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (02) : 122 - 125
  • [28] Degree conditions and degree bounded trees
    Matsuda, Haruhide
    Matsumura, Hajime
    [J]. DISCRETE MATHEMATICS, 2009, 309 (11) : 3653 - 3658
  • [29] EUCLIDEAN MINIMUM SPANNING-TREES AND BICHROMATIC CLOSEST PAIRS
    AGARWAL, PK
    EDELSBRUNNER, H
    SCHWARZKOPF, O
    WELZL, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) : 407 - 422
  • [30] The rupture degree of trees
    Li, Yinkui
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1629 - 1635