Plane Bichromatic Trees of Low Degree

被引:0
|
作者
Ahmad Biniaz
Prosenjit Bose
Anil Maheshwari
Michiel Smid
机构
[1] Carleton University,School of Computer Science
来源
关键词
Bichromatic trees; Plane trees; Low-degree trees;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and B be two disjoint sets of points in the plane such that |B|≤|R|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|B|\le |R|$$\end{document}, and no three points of R∪B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\cup B$$\end{document} are collinear. We show that the geometric complete bipartite graph K(R, B) contains a non-crossing spanning tree whose maximum degree is at most max{3,⌈(|R|-1)/|B|⌉+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \,\{3, \lceil (|R|-1)/|B|\rceil + 1\}$$\end{document}; this is the best possible upper bound on the maximum degree. This proves two conjectures made by Kaneko, 1998, and solves an open problem posed by Abellanas et al. at the Graph Drawing Symposium, 1996.
引用
收藏
页码:864 / 885
页数:21
相关论文
共 50 条
  • [1] Plane Bichromatic Trees of Low Degree
    Biniaz, Ahmad
    Bose, Prosenjit
    Maheshwari, Anil
    Smid, Michiel
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (04) : 864 - 885
  • [2] Plane Bichromatic Trees of Low Degree
    Biniaz, Ahmad
    Bose, Prosenjit
    Maheshwari, Anil
    Smid, Michiel
    [J]. COMBINATORIAL ALGORITHMS, 2016, 9843 : 68 - 80
  • [3] On the maximum degree of bipartite embeddings of trees in the plane
    Kaneko, A
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, 2000, 1763 : 166 - 171
  • [4] BICHROMATIC LINES IN THE PLANE
    Payne, Michael S.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 857 - 864
  • [5] COUNTING BICHROMATIC EVOLUTIONARY TREES
    ERDOS, PL
    SZEKELY, LA
    [J]. DISCRETE APPLIED MATHEMATICS, 1993, 47 (01) : 1 - 8
  • [6] On Spanning Trees without Vertices of Degree 2 in Plane Triangulations
    Karpov D.V.
    [J]. Journal of Mathematical Sciences, 2020, 247 (3) : 438 - 441
  • [7] PLANAR BICHROMATIC BOTTLENECK SPANNING TREES
    Abu-Affash, A. Karim
    Bhore, Sujoy
    Carmi, Paz
    Mitchell, Joseph S. B.
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2021, 12 (01) : 109 - 127
  • [8] Planar bichromatic minimum spanning trees
    Borgelt, Magdalene G.
    van Kreveld, Marc
    Loffler, Maarten
    Luo, Jun
    Merrick, Damian
    Silveira, Rodrigo I.
    Vahedi, Mostafa
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 469 - 478
  • [9] Bottleneck bichromatic full Steiner trees
    Abu-Affash, A. Karim
    Bhore, Sujoy
    Carmi, Paz
    Chakraborty, Dibyayan
    [J]. INFORMATION PROCESSING LETTERS, 2019, 142 : 14 - 19
  • [10] On spanning trees and walks of low maximum degree
    Sanders, DP
    Zhao, Y
    [J]. JOURNAL OF GRAPH THEORY, 2001, 36 (02) : 67 - 74