Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain

被引:0
|
作者
Jie Li
Kangsheng Liu
机构
[1] Zhejiang University,Department of Mathematics
关键词
Well-posedness; Korteweg-de Vries-Burgers equation; nonhomogeneous boundary; semigroup; nonlinear interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,we consider the Korteweg-de Vries-Burgers equation on a finite domain with initial value and nonhomogeneous boundary conditions. This particular problem arises in the theory of ferroelectricity. We first get the local well-posedness of the problem, and then under the help of the local result, we use nonlinear interpolation to have the global well-posedness of the problem.
引用
收藏
页码:91 / 116
页数:25
相关论文
共 50 条
  • [31] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [32] Collision dynamics of fronts in the Korteweg-de Vries-Burgers equation
    Puri, S
    Desai, RC
    Kapral, R
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 89 (1-2) : 15 - 27
  • [33] Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation
    Dlotko, Tomasz
    Sun, Chunyou
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 571 - 595
  • [34] Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation
    A. P. Chugainova
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 204 - 212
  • [35] The Korteweg-de Vries-Burgers equation and its approximate solution
    Wang, Xiaohui
    Feng, Zhaosheng
    Debnath, Lokenath
    Gao, David Y.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (06) : 853 - 863
  • [36] Distributed control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [37] Boundary control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    NONLINEAR DYNAMICS, 2008, 51 (03) : 439 - 446
  • [38] ON THE APPROXIMATION OF SOLUTIONS OF THE GENERALIZED KORTEWEG-DE VRIES-BURGERS EQUATION
    KARAKASHIAN, O
    MCKINNEY, W
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 405 - 416
  • [39] Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation
    Chugainova, A. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 281 (01) : 204 - 212
  • [40] New class of solutions of the Korteweg-de Vries-Burgers equation
    Zayko, YN
    Nefedov, IS
    APPLIED MATHEMATICS LETTERS, 2001, 14 (01) : 115 - 121