Characterization of terrestrial dissolved organic matter fractionated by pH and polarity and their biological effects on plant growth

被引:13
|
作者
Sleighter R.L. [1 ,2 ]
Caricasole P. [1 ]
Richards K.M. [1 ]
Hanson T. [1 ]
Hatcher P.G. [1 ,2 ]
机构
[1] Research and Development, FBSciences, Inc, 4111 Monarch Way, Suite 408, Norfolk, 23508, VA
[2] Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, 23529, VA
关键词
Bioassays; C18 solid phase extraction; Dissolved organic matter; EEMs; FTICR-MS; Humic substances; Plant growth; Proton NMR;
D O I
10.1186/s40538-015-0036-2
中图分类号
学科分类号
摘要
Background: Humic substances are ubiquitous in the environment, complex mixtures, and known to be beneficial to plant growth. To better understand and identify components responsible for plant growth stimulation, a terrestrial aquatic DOM sample was fractionated according to pH and polarity, obtaining acid-soluble and acid-insoluble portions, as well as acid-soluble hydrophobic and hydrophilic fractions using C18. The various fractions were characterized then evaluated for their biological effects on plant growth using bioassays with corn at two carbon rates. Results: Approximately 43% and 57% of the carbon, and 31% and 69% of the iron, was found in the acid-insoluble and acid-soluble fractions, respectively. Upon separating the acid-soluble portion using C18 extraction, about 64% and 36% of the carbon (and 96% and 4% of the iron) was present in the hydrophilic and hydrophobic fractions, respectively. The acid-insoluble portion was more aromatic and less oxygenated than the acid-soluble fraction. The hydrophilic filtrate was oxygen-rich and contained mostly tannin-like molecules, while the hydrophobic retentate was more aromatic and lignin-like. During bioassay testing, it was found that more hydrophilic samples (those that are more oxygenated) yielded the highest response for shoot measurements. For root measurements, the lower DOC rate (0.01 mg/L C) gave better results than the higher DOC rate (0.1 mg/L C). Also, the hydrophobic, less oxygenated acid-insoluble sample performed better than the more hydrophilic acid-soluble portion. The polarity fractions at the lower carbon application showed that larger root systems occurred when there was more hydrophobic C18 retentate material present. The opposite was true for the root system at the higher carbon application, where larger roots existed when more hydrophilic C18 filtrate material was present. Conclusions: Compositional differences were found when comparing the acid-soluble versus acid-insoluble portions and the hydrophobic versus hydrophilic C18 fractions, and activity with respect to plant stimulation was discerned. While a carbon rate affect was observed during foliar application to corn plants (with the lower carbon rate generally yielding the best biological stimulation), the various observed trends indicate that plant response is due to not only the amount of carbon present but also the type of carbon. © 2015, Sleighter et al.; licensee Springer.
引用
收藏
相关论文
共 50 条
  • [21] Elucidating stream bacteria utilizing terrestrial dissolved organic matter
    Philips Akinwole
    Louis Kaplan
    Robert Findlay
    World Journal of Microbiology and Biotechnology, 2021, 37
  • [22] Throughfall Dissolved Organic Matter as a Terrestrial Disinfection Byproduct Precursor
    Chen, Huan
    Tsai, Kuo-Pei
    Su, Qiong
    Chow, Alex T.
    Wang, Jun-Jian
    ACS EARTH AND SPACE CHEMISTRY, 2019, 3 (08): : 1603 - 1613
  • [23] Elucidating stream bacteria utilizing terrestrial dissolved organic matter
    Akinwole, Philips
    Kaplan, Louis
    Findlay, Robert
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (02):
  • [24] Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation
    Hansen, Angela M.
    Kraus, Tamara E. C.
    Pellerin, Brian A.
    Fleck, Jacob A.
    Downing, Bryan D.
    Bergamaschi, Brian A.
    LIMNOLOGY AND OCEANOGRAPHY, 2016, 61 (03) : 1015 - 1032
  • [25] INFLUENCE OF PH ON THE FLUORESCENCE OF DISSOLVED ORGANIC-MATTER
    LAANE, RWPM
    MARINE CHEMISTRY, 1982, 11 (04) : 395 - 401
  • [26] Effect of dissolved organic matter and pH on copper adsorption
    Mesquita, ME
    Carranca, C
    Silva, JMV
    Gusmao, R
    AGROCHIMICA, 2004, 48 (5-6): : 222 - 232
  • [27] Effects of organic sulfur and arsenite/dissolved organic matter ratios on arsenite complexation with dissolved organic matter
    Abu-Ali, Lena
    Yoon, Hyun
    Reid, Matthew C.
    CHEMOSPHERE, 2022, 302
  • [28] Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition
    Neilen, Amanda D.
    Hawker, Darryl W.
    O'Brien, Katherine R.
    Burford, Michele A.
    CHEMOSPHERE, 2017, 184 : 969 - 980
  • [29] Occurrence, polarity and bioavailability of dissolved organic matter in the Huangpu River,China
    Qianqian Dong
    Penghui Li
    Qinghui Huang
    Ahmed A.Abdelhafez
    Ling Chen
    Journal of Environmental Sciences, 2014, (09) : 1843 - 1850
  • [30] Occurrence, polarity and bioavailability of dissolved organic matter in the Huangpu River, China
    Dong, Qianqian
    Li, Penghui
    Huang, Qinghui
    Abdelhafez, Ahmed A.
    Chen, Ling
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2014, 26 (09) : 1843 - 1850