Transition formulas for involution Schubert polynomials

被引:0
|
作者
Zachary Hamaker
Eric Marberg
Brendan Pawlowski
机构
[1] University of Michigan,Department of Mathematics
[2] The Hong Kong University of Science and Technology,Department of Mathematics
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Primary 20B30; 14M15; 05E05; Secondary 20F55; 14M27;
D O I
暂无
中图分类号
学科分类号
摘要
The orbits of the orthogonal and symplectic groups on the flag variety are in bijection, respectively, with the involutions and fixed-point-free involutions in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. Wyser and Yong have described polynomial representatives for the cohomology classes of the closures of these orbits, which we denote as S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} (to be called involution Schubert polynomials) and S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document} (to be called fixed-point-free involution Schubert polynomials). Our main results are explicit formulas decomposing the product of S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} (respectively, S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document}) with any y-invariant linear polynomial as a linear combination of other involution Schubert polynomials. These identities serve as analogues of Lascoux and Schützenberger’s transition formula for Schubert polynomials, and lead to a self-contained algebraic proof of the nontrivial equivalence of several definitions of S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} and S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document} appearing in the literature. Our formulas also imply combinatorial identities about involution words, certain variations of reduced words for involutions in Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. We construct operators on involution words based on the Little map to prove these identities bijectively. The proofs of our main theorems depend on some new technical results, extending work of Incitti, about covering relations in the Bruhat order of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} restricted to involutions.
引用
收藏
页码:2991 / 3025
页数:34
相关论文
共 50 条
  • [11] FLAGS, SCHUBERT POLYNOMIALS, DEGENERACY LOCI, AND DETERMINANTAL FORMULAS
    FULTON, W
    DUKE MATHEMATICAL JOURNAL, 1992, 65 (03) : 381 - 420
  • [12] Schubert functors and Schubert polynomials
    Kraskiewicz, W
    Pragacz, P
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1327 - 1344
  • [13] SCHUBERT POLYNOMIALS
    LASCOUX, A
    SCHUTZENBERGER, MP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (13): : 447 - 450
  • [14] Universal Schubert polynomials
    Fulton, W
    DUKE MATHEMATICAL JOURNAL, 1999, 96 (03) : 575 - 594
  • [15] Twisted Schubert polynomials
    Liu, Ricky Ini
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (05):
  • [16] Twisted Schubert polynomials
    Ricky Ini Liu
    Selecta Mathematica, 2022, 28
  • [17] The skew Schubert polynomials
    Chen, WYC
    Yan, GG
    Yang, ALB
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1181 - 1196
  • [18] Rational Schubert polynomials
    Aker, Kursat
    Tutas, Nesrin
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (03) : 439 - 452
  • [19] Quantum Schubert polynomials
    Fomin, S
    Gelfand, S
    Postnikov, A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (03) : 565 - 596
  • [20] Complements of Schubert polynomials
    Fan, Neil J. Y.
    Guo, Peter L.
    Liu, Nicolas Y.
    ADVANCES IN APPLIED MATHEMATICS, 2024, 157