Transition formulas for involution Schubert polynomials

被引:0
|
作者
Zachary Hamaker
Eric Marberg
Brendan Pawlowski
机构
[1] University of Michigan,Department of Mathematics
[2] The Hong Kong University of Science and Technology,Department of Mathematics
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Primary 20B30; 14M15; 05E05; Secondary 20F55; 14M27;
D O I
暂无
中图分类号
学科分类号
摘要
The orbits of the orthogonal and symplectic groups on the flag variety are in bijection, respectively, with the involutions and fixed-point-free involutions in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. Wyser and Yong have described polynomial representatives for the cohomology classes of the closures of these orbits, which we denote as S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} (to be called involution Schubert polynomials) and S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document} (to be called fixed-point-free involution Schubert polynomials). Our main results are explicit formulas decomposing the product of S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} (respectively, S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document}) with any y-invariant linear polynomial as a linear combination of other involution Schubert polynomials. These identities serve as analogues of Lascoux and Schützenberger’s transition formula for Schubert polynomials, and lead to a self-contained algebraic proof of the nontrivial equivalence of several definitions of S^y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mathfrak S}}_y$$\end{document} and S^yFPF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\mathfrak S}^\mathtt{{FPF}}_y$$\end{document} appearing in the literature. Our formulas also imply combinatorial identities about involution words, certain variations of reduced words for involutions in Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. We construct operators on involution words based on the Little map to prove these identities bijectively. The proofs of our main theorems depend on some new technical results, extending work of Incitti, about covering relations in the Bruhat order of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} restricted to involutions.
引用
收藏
页码:2991 / 3025
页数:34
相关论文
共 50 条
  • [1] Transition formulas for involution Schubert polynomials
    Hamaker, Zachary
    Marberg, Eric
    Pawlowski, Brendan
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 2991 - 3025
  • [2] Schubert polynomials and quiver formulas
    Buch, AS
    Kresch, A
    Tamvakis, H
    Yong, A
    DUKE MATHEMATICAL JOURNAL, 2004, 122 (01) : 125 - 143
  • [3] Tableau formulas for skew Schubert polynomials
    Tamvakis, Harry
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1926 - 1943
  • [4] Schubert polynomials and degeneracy locus formulas
    Tamvakis, Harry
    SCHUBERT VARIETIES, EQUIVARIANT COHOMOLOGY AND CHARACTERISTIC CLASSES, IMPANGA 15, 2018, : 261 - 314
  • [5] On Formulas and Some Combinatorial Properties of Schubert Polynomials
    Zhang, Zerui
    Chen, Yuqun
    ALGEBRA COLLOQUIUM, 2017, 24 (04) : 647 - 672
  • [6] A unified approach to combinatorial formulas for Schubert polynomials
    Lenart, C
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (03) : 263 - 299
  • [7] A unified approach to combinatorial formulas for Schubert polynomials
    Lenart, C. (lenart@csc.albany.edu), 1600, Kluwer Academic Publishers (20):
  • [8] Determinantal Formulas for SEM Expansions of Schubert Polynomials
    Hatam, Hassan
    Johnson, Joseph
    Liu, Ricky Ini
    Macaulay, Maria
    ANNALS OF COMBINATORICS, 2021, 25 (04) : 1049 - 1074
  • [9] Determinantal Formulas for SEM Expansions of Schubert Polynomials
    Hassan Hatam
    Joseph Johnson
    Ricky Ini Liu
    Maria Macaulay
    Annals of Combinatorics, 2021, 25 : 1049 - 1074
  • [10] A Unified Approach to Combinatorial Formulas for Schubert Polynomials
    Cristian Lenart
    Journal of Algebraic Combinatorics, 2004, 20 : 263 - 299