Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis

被引:0
|
作者
Violeta J. Rodriguez
Yue Pan
Ana S. Salazar
Nicholas Fonseca Nogueira
Patricia Raccamarich
Nichole R. Klatt
Deborah L. Jones
Maria L. Alcaide
机构
[1] University of Miami Miller School of Medicine,Department of Psychiatry and Behavioral Sciences
[2] University of Georgia,Department of Psychology
[3] University of Miami Miller School of Medicine,Division of Biostatistics, Department of Public Health Sciences
[4] University of Miami Miller School of Medicine,Division of Infectious Diseases, Department of Medicine
[5] University of Minnesota,Surgical Outcomes and Precision Medicine Research Division, Department of Surgery
来源
关键词
Bacterial vaginosis; Unsupervised machine learning; Sexual behavior; Women;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1053 / 1063
页数:10
相关论文
共 50 条
  • [41] Credit Scoring to Classify Consumer Loan Using Machine Learning
    Natasha, Azaria
    Prastyo, Dedy Dwi
    Suhartono
    2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194
  • [42] SemiDroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches
    Mahindru, Arvind
    Sangal, A. L.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (05) : 1369 - 1411
  • [43] Using machine learning to classify temporomandibular disorders: a proof of concept
    Zatt, Fernanda Pretto
    Cordeiro, Joao Victor Cunha
    Bohner, Lauren
    de Souza, Beatriz Dulcineia Mendes
    Caldas, Victor Emanoel Armini
    Caldas, Ricardo Armini
    JOURNAL OF APPLIED ORAL SCIENCE, 2024, 32
  • [44] An interpretation algorithm for molecular diagnosis of bacterial vaginosis in a maternity hospital using machine learning: proof-of-concept study
    Drew, Richard J.
    Murphy, Thomas
    Broderick, Deirdre
    O'Gorman, Joanne
    Eogan, Maeve
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2020, 96 (02)
  • [45] Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively
    Baek, JH
    Cosman, P
    Feng, ZY
    Silver, J
    Schafer, WR
    JOURNAL OF NEUROSCIENCE METHODS, 2002, 118 (01) : 9 - 21
  • [46] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    INFORMATION, 2023, 14 (06)
  • [47] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    PLOS ONE, 2018, 13 (11):
  • [48] Ranking online retailers using unsupervised machine learning
    Sharma, Himanshu
    Anubha, Anubha
    OPSEARCH, 2024,
  • [49] Clustering Seismocardiographic Events using Unsupervised Machine Learning
    Gamage, Peshala T.
    Azad, Md Khurshidul.
    Taebi, Amirtaha
    Sandler, Richard H.
    Mansy, Hansen A.
    2018 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2018,
  • [50] Classifying the clouds of Venus using unsupervised machine learning
    Mittendorf, J.
    Molaverdikhani, K.
    Ercolano, B.
    Giovagnoli, A.
    Grassi, T.
    ASTRONOMY AND COMPUTING, 2024, 49