Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis

被引:0
|
作者
Violeta J. Rodriguez
Yue Pan
Ana S. Salazar
Nicholas Fonseca Nogueira
Patricia Raccamarich
Nichole R. Klatt
Deborah L. Jones
Maria L. Alcaide
机构
[1] University of Miami Miller School of Medicine,Department of Psychiatry and Behavioral Sciences
[2] University of Georgia,Department of Psychology
[3] University of Miami Miller School of Medicine,Division of Biostatistics, Department of Public Health Sciences
[4] University of Miami Miller School of Medicine,Division of Infectious Diseases, Department of Medicine
[5] University of Minnesota,Surgical Outcomes and Precision Medicine Research Division, Department of Surgery
来源
关键词
Bacterial vaginosis; Unsupervised machine learning; Sexual behavior; Women;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1053 / 1063
页数:10
相关论文
共 50 条
  • [1] Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis
    Rodriguez, Violeta J.
    Pan, Yue
    Salazar, Ana S.
    Nogueira, Nicholas Fonseca
    Raccamarich, Patricia
    Klatt, Nichole R.
    Jones, Deborah L.
    Alcaide, Maria L.
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (03) : 1053 - 1063
  • [2] Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics
    Beck, Daniel
    Foster, James A.
    PLOS ONE, 2014, 9 (02):
  • [3] Behavioral risk factors for bacterial vaginosis
    Williams, LA
    Foxman, B
    CLINICAL INFECTIOUS DISEASES, 2000, 31 (01) : 303 - 303
  • [4] Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning
    Cameron Celeste
    Dion Ming
    Justin Broce
    Diandra P. Ojo
    Emma Drobina
    Adetola F. Louis-Jacques
    Juan E. Gilbert
    Ruogu Fang
    Ivana K. Parker
    npj Digital Medicine, 6
  • [5] Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning
    Celeste, Cameron
    Ming, Dion
    Broce, Justin
    Ojo, Diandra P.
    Drobina, Emma
    Louis-Jacques, Adetola F.
    Gilbert, Juan E.
    Fang, Ruogu
    Parker, Ivana K.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [6] APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS
    Baker, Yolanda S.
    Agrawal, Rajeev
    Foster, James A.
    Beck, Daniel
    Dozier, Gerry
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2014, : 241 - 246
  • [7] Unsupervised machine learning to classify the confinement of waves in periodic superstructures
    Kozon, Marek
    Schrijver, Rutger
    Schlottbom, Matthias
    van der Vegt, Jaap J. W.
    Vos, Willem L.
    OPTICS EXPRESS, 2023, 31 (19): : 31177 - 31199
  • [8] Unsupervised Machine Learning to Classify Euthymic Bipolar Individuals Into Putative Subtypes
    Njau, Stephanie
    Townsend, Jenniffer
    Hellemann, Gerhard
    Wade, Benjamin
    Bookheimer, Susan
    Narr, Katherine
    Brooks, John
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S114 - S114
  • [9] Using Machine Learning to Classify Test Outcomes
    Roper, Marc
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING (AITEST), 2019, : 99 - 100
  • [10] Applying Unsupervised Machine Learning Method on FRA Data to Classify Winding Types
    Mao, Xiaozhou
    Ji, Shuntao
    Wang, Zhongdong
    Jarman, Paul
    Fieldsend-Roxborough, Andrew
    Wilson, Gordon
    PROCEEDINGS OF THE 21ST INTERNATIONAL SYMPOSIUM ON HIGH VOLTAGE ENGINEERING, VOL 1, 2020, 598 : 969 - 981