Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method

被引:0
|
作者
Chengpeng Lu
Longcang Shu
Xunhong Chen
Cheng Cheng
机构
[1] Hohai University,State Key Laboratory of Hydrology
[2] University of Nebraska-Lincoln,Water Resources and Hydraulic Engineering
[3] Chang’an University,School of Natural Resources
来源
关键词
Aquifer thickness; Karst aquifer; Genetic algorithm; Search bounds; Aquifer heterogeneity; Anisotropic ratio;
D O I
暂无
中图分类号
学科分类号
摘要
The thickness of an aquifer (B) is a critical hydrogeologic parameter in understanding groundwater system, especially in a karst aquifer where the high heterogeneity in this parameter brings more uncertainty to the evaluation of groundwater resources. In this study, the genetic algorithm (GA) method was used to estimate B, as well as five other parameters, including Kr (horizontal hydraulic conductivity), Kz (vertical hydraulic conductivity), S (storativity), Sy (specific yield), and α (delayed coefficient) of a karst aquifer based on a pumping test. The search bounds of the six parameters for the GA method were obtained from numerous hypothetic numerical tests. The feasibility of the GA method for parameter estimation was verified by the results obtained from the gradient method in terms of a pumping test conducted in the Platte River valley in Nebraska. Then, this approach was used to estimate the hydraulic parameters in a karst aquifer with unknown aquifer thickness based on a pumping recovery test conducted in the Houzhai karst basin, southwestern China. The results show that the Kr, Kz, and the anisotropy ratio of Kr to Kz are strongly affected by B. The differences between the estimated parameter values at two observation wells indicate the existence of high heterogeneity in the karst aquifer. The parameter B has the highest absolute normalized sensitivity among these variables, implying that the estimated B may be more reliable as compared to other parameters. This study demonstrates that the GA method is an alternative method of parameter estimation with the unknown aquifer thickness.
引用
下载
收藏
页码:797 / 807
页数:10
相关论文
共 50 条
  • [21] A new method for aquifer system identification and parameter estimation
    Avci, Cem B.
    Sahin, A. Ufuk
    Ciftci, Emin
    HYDROLOGICAL PROCESSES, 2013, 27 (17) : 2485 - 2497
  • [22] Simple method for confined-aquifer parameter estimation
    Singh, SK
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2000, 126 (06) : 404 - 407
  • [23] Parameter Estimation in Complex Plankton Models using the Boundary Eigenvalue Nudging - Genetic Algorithm (BENGA) Method
    Cropp, R. A.
    Bates, M. L.
    Hawker, D. W.
    Norbury, J.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 1233 - 1239
  • [24] Parameter estimation of three-winding transformers using genetic algorithm
    Thilagar, SH
    Rao, GS
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2002, 15 (05) : 429 - 437
  • [25] Parameter Estimation of Space-Time Model Using Genetic Algorithm
    Halim, S.
    Bisono, I. N.
    Sunyoto, D.
    Gendo, I.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 1371 - 1375
  • [26] Estimation of Vector Autoregressive Model's Parameter Using Genetic Algorithm
    Kristianda, Febrian
    Irhamah
    Fithriasari, Kartika
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT INFORMATICS (SAIN), 2018, : 72 - 77
  • [27] Kinetic parameter estimation from compartment models using a genetic algorithm
    Murase, K
    Mochizuki, T
    Kikuchi, T
    Ikezoe, J
    NUCLEAR MEDICINE COMMUNICATIONS, 1999, 20 (10) : 925 - 932
  • [28] Parameter Estimation of Nonlinear Nitrate Prediction Model Using Genetic Algorithm
    Wu, Rui
    Painumkal, Jose T.
    Volk, John M.
    Liu, Siming
    Louis, Sushil J.
    Tyler, Scott
    Dascalu, Sergiu M.
    Harris, Frederick C., Jr.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1893 - 1899
  • [29] Parameter Estimation for the Phenomenological Model of Hysteresis Using Efficient Genetic Algorithm
    Xue Xiaomin
    Zhang Ling
    Sun Qing
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 713 - +
  • [30] Motion Estimation Using the Gradient Method by Genetic Algorithm
    Kakhki, Mostafa Attaran
    Javan, Dawood Seyed
    Ghouchani, Omid Hashemi
    Mashhadi, Habib Rajabi
    2010 12TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2010, : 252 - 255