Universality of the mean-field for the Potts model

被引:0
|
作者
Anirban Basak
Sumit Mukherjee
机构
[1] Duke University,Department of Mathematics
[2] Columbia University,Department of Statistics
来源
关键词
Ising measure; Potts model; Log partition function ; Mean-field; Large deviation; 60K35; 82B20; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Potts model with q colors on a sequence of weighted graphs with adjacency matrices An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document}, allowing for both positive and negative weights. Under a mild regularity condition on An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} we show that the mean-field prediction for the log partition function is asymptotically correct, whenever tr(An2)=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{tr}}}(A_n^2)=o(n)$$\end{document}. In particular, our results are applicable for the Ising and the Potts models on any sequence of graphs with average degree going to +∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+\infty $$\end{document}. Using this, we establish the universality of the limiting log partition function of the ferromagnetic Potts model for a sequence of asymptotically regular graphs, and that of the Ising model for bi-regular bipartite graphs in both ferromagnetic and anti-ferromagnetic domain. We also derive a large deviation principle for the empirical measure of the colors for the Potts model on asymptotically regular graphs.
引用
收藏
页码:557 / 600
页数:43
相关论文
共 50 条
  • [31] Mean-field theory as applied to the Ising model with mobile impurities and to the three-state Potts model
    S. V. Semkin
    V. P. Smagin
    [J]. Physics of the Solid State, 2014, 56 : 2425 - 2429
  • [32] Mean-Field Theory as Applied to the Ising Model with Mobile Impurities and to the Three-State Potts Model
    Semkin, S. V.
    Smagin, V. P.
    [J]. PHYSICS OF THE SOLID STATE, 2014, 56 (12) : 2425 - 2429
  • [33] MEAN-FIELD RENORMALIZATION-GROUP STUDY OF THE SEMI-INFINITE POTTS-MODEL
    SANTOS, MA
    MARQUES, MC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17): : 6143 - 6146
  • [34] Mean-field universality class induced by weak hyperbolic curvatures
    Gendiar, Andrej
    Daniska, Michal
    Krcmar, Roman
    Nishino, Tomotoshi
    [J]. PHYSICAL REVIEW E, 2014, 90 (01):
  • [35] TWO-DIMENSIONAL ITERATED MAPPING FOR THE MEAN-FIELD THEORY OF THE CHIRAL POTTS-MODEL
    OTTINGER, HC
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (10): : L257 - L263
  • [36] Gibbsian and Non-Gibbsian Properties of the Generalized Mean-Field Fuzzy Potts-Model
    Jahnel, B.
    Kuelske, C.
    Rudelli, E.
    Wegener, J.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2014, 20 (04) : 601 - 632
  • [37] On the Mean-Field Spherical Model
    Michael Kastner
    Oliver Schnetz
    [J]. Journal of Statistical Physics, 2006, 122 : 1195 - 1214
  • [38] MODEL-FREE MEAN-FIELD REINFORCEMENT LEARNING: MEAN-FIELD MDP AND MEAN-FIELD Q-LEARNING
    Carmona, Rene
    Lauriere, Mathieu
    Tan, Zongjun
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 5334 - 5381
  • [39] On the mean-field spherical model
    Kastner, M
    Schnetz, O
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (06) : 1195 - 1213
  • [40] MEAN-FIELD THEORY OF THE POTTS SPIN-GLASS WITH FINITE CONNECTIVITY
    GOLDSCHMIDT, YY
    [J]. NUCLEAR PHYSICS B, 1988, 295 (03) : 409 - 421