Universality of the mean-field for the Potts model

被引:0
|
作者
Anirban Basak
Sumit Mukherjee
机构
[1] Duke University,Department of Mathematics
[2] Columbia University,Department of Statistics
来源
关键词
Ising measure; Potts model; Log partition function ; Mean-field; Large deviation; 60K35; 82B20; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Potts model with q colors on a sequence of weighted graphs with adjacency matrices An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document}, allowing for both positive and negative weights. Under a mild regularity condition on An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} we show that the mean-field prediction for the log partition function is asymptotically correct, whenever tr(An2)=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{tr}}}(A_n^2)=o(n)$$\end{document}. In particular, our results are applicable for the Ising and the Potts models on any sequence of graphs with average degree going to +∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+\infty $$\end{document}. Using this, we establish the universality of the limiting log partition function of the ferromagnetic Potts model for a sequence of asymptotically regular graphs, and that of the Ising model for bi-regular bipartite graphs in both ferromagnetic and anti-ferromagnetic domain. We also derive a large deviation principle for the empirical measure of the colors for the Potts model on asymptotically regular graphs.
引用
收藏
页码:557 / 600
页数:43
相关论文
共 50 条
  • [1] Universality of the mean-field for the Potts model
    Basak, Anirban
    Mukherjee, Sumit
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) : 557 - 600
  • [2] Glauber Dynamics for the Mean-Field Potts Model
    Cuff, P.
    Ding, J.
    Louidor, O.
    Lubetzky, E.
    Peres, Y.
    Sly, A.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (03) : 432 - 477
  • [3] Glauber Dynamics for the Mean-Field Potts Model
    P. Cuff
    J. Ding
    O. Louidor
    E. Lubetzky
    Y. Peres
    A. Sly
    [J]. Journal of Statistical Physics, 2012, 149 : 432 - 477
  • [4] Phase transitions of the mean-field Potts glass model in a field
    Yokota, T
    [J]. PHYSICAL REVIEW B, 2004, 70 (17): : 1 - 14
  • [5] MEAN-FIELD LIMITS OF THE QUANTUM POTTS-MODEL
    CANT, A
    PEARCE, PA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (03) : 373 - 387
  • [6] MEAN-FIELD THEORY OF THE CHIRAL POTTS-MODEL
    OTTINGER, HC
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (36): : 1257 - 1262
  • [7] MEAN-FIELD THEORY OF MANY COMPONENT POTTS MODEL
    MITTAG, L
    STEPHEN, MJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (09): : L109 - L112
  • [8] Mean-field approximation for the potts model of a diluted magnet in the external field
    Semkin, S. V.
    Smagin, V. P.
    [J]. PHYSICS OF THE SOLID STATE, 2016, 58 (07) : 1350 - 1354
  • [9] Replica symmetry breaking for the mean-field Potts glass model in a field
    Yokota, T
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 90 - 93
  • [10] Mean-field approximation for the potts model of a diluted magnet in the external field
    S. V. Semkin
    V. P. Smagin
    [J]. Physics of the Solid State, 2016, 58 : 1350 - 1354