Packing and Covering Balls in Graphs Excluding a Minor

被引:0
|
作者
Nicolas Bousquet
Wouter Cames Van Batenburg
Louis Esperet
Gwenaël Joret
William Lochet
Carole Muller
François Pirot
机构
[1] CNRS Univ. Grenoble Alpes,Laboratoire G
[2] University of Bergen,SCOP
[3] Université Libre de Bruxelles,Algorithms Research Group
[4] Université Libre de Bruxelles,Département d’Informatique
[5] Université Libre de Bruxelles,Département de Mathématique
来源
Combinatorica | 2021年 / 41卷
关键词
05C10; 05C12; 05C65; 05C69; 05C83;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for every integer t ⩾ 1 there exists a constant ct such that for every Kt-minor-free graph G, and every set S of balls in G, the minimum size of a set of vertices of G intersecting all the balls of S is at most ct times the maximum number of vertex-disjoint balls in S. This was conjectured by Chepoi, Estellon, and Vaxès in 2007 in the special case of planar graphs and of balls having the same radius.
引用
收藏
页码:299 / 318
页数:19
相关论文
共 50 条
  • [1] PACKING AND COVERING BALLS IN GRAPHS EXCLUDING A MINOR
    Bousquet, Nicolas
    Van Batenburg, Wouter Cames
    Esperet, Louis
    Joret, Gwenael
    Lochet, William
    Muller, Carole
    Pirot, Francois
    COMBINATORICA, 2021, 41 (03) : 299 - 318
  • [2] Packing and covering δ-hyperbolic spaces by balls
    Chepoi, Victor
    Estellon, Bertrand
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 59 - +
  • [3] Packing and Covering with Balls on Busemann Surfaces
    Victor Chepoi
    Bertrand Estellon
    Guyslain Naves
    Discrete & Computational Geometry, 2017, 57 : 985 - 1011
  • [4] Packing and Covering with Balls on Busemann Surfaces
    Chepoi, Victor
    Estellon, Bertrand
    Naves, Guyslain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (04) : 985 - 1011
  • [5] ON PACKING AND COVERING NUMBERS OF GRAPHS
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1991, 96 (03) : 229 - 238
  • [6] Packing and covering dense graphs
    Alon, N
    Caro, Y
    Yuster, R
    JOURNAL OF COMBINATORIAL DESIGNS, 1998, 6 (06) : 451 - 472
  • [7] Packing and covering triangles in graphs
    Discrete Math, 1-3 (251-254):
  • [8] Packing and covering triangles in graphs
    Haxell, PE
    DISCRETE MATHEMATICS, 1999, 195 (1-3) : 251 - 254
  • [9] Edge Separators for Graphs Excluding a Minor
    Joret, Gwenael
    Lochet, William
    Seweryn, Michal T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04):
  • [10] An -Approximation for Covering and Packing Minor Models of
    Chatzidimitriou, Dimitris
    Raymond, Jean-Florent
    Sau, Ignasi
    Thilikos, Dimitrios M.
    ALGORITHMICA, 2018, 80 (04) : 1330 - 1356