PACKING AND COVERING BALLS IN GRAPHS EXCLUDING A MINOR

被引:1
|
作者
Bousquet, Nicolas [1 ]
Van Batenburg, Wouter Cames [2 ]
Esperet, Louis [1 ]
Joret, Gwenael [2 ]
Lochet, William [3 ]
Muller, Carole [4 ]
Pirot, Francois [1 ,2 ]
机构
[1] Univ Grenoble Alpes, Lab G SCOP, CNRS, Grenoble, France
[2] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[3] Univ Bergen, Algorithms Res Grp, Bergen, Norway
[4] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
05C10; 05C12; 05C65; 05C69; 05C83;
D O I
10.1007/s00493-020-4423-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every integer t > 1 there exists a constant c(t) such that for every K-t-minor-free graph G, and every set S of balls in G, the minimum size of a set of vertices of G intersecting all the balls of S is at most c(t) times the maximum number of vertex-disjoint balls in S. This was conjectured by Chepoi, Estellon, and Vaxes in 2007 in the special case of planar graphs and of balls having the same radius.
引用
收藏
页码:299 / 318
页数:20
相关论文
共 50 条
  • [1] Packing and Covering Balls in Graphs Excluding a Minor
    Nicolas Bousquet
    Wouter Cames Van Batenburg
    Louis Esperet
    Gwenaël Joret
    William Lochet
    Carole Muller
    François Pirot
    Combinatorica, 2021, 41 : 299 - 318
  • [2] Packing and covering δ-hyperbolic spaces by balls
    Chepoi, Victor
    Estellon, Bertrand
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 59 - +
  • [3] Packing and Covering with Balls on Busemann Surfaces
    Victor Chepoi
    Bertrand Estellon
    Guyslain Naves
    Discrete & Computational Geometry, 2017, 57 : 985 - 1011
  • [4] Packing and Covering with Balls on Busemann Surfaces
    Chepoi, Victor
    Estellon, Bertrand
    Naves, Guyslain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (04) : 985 - 1011
  • [5] ON PACKING AND COVERING NUMBERS OF GRAPHS
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1991, 96 (03) : 229 - 238
  • [6] Packing and covering dense graphs
    Alon, N
    Caro, Y
    Yuster, R
    JOURNAL OF COMBINATORIAL DESIGNS, 1998, 6 (06) : 451 - 472
  • [7] Packing and covering triangles in graphs
    Discrete Math, 1-3 (251-254):
  • [8] Packing and covering triangles in graphs
    Haxell, PE
    DISCRETE MATHEMATICS, 1999, 195 (1-3) : 251 - 254
  • [9] Edge Separators for Graphs Excluding a Minor
    Joret, Gwenael
    Lochet, William
    Seweryn, Michal T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04):
  • [10] An -Approximation for Covering and Packing Minor Models of
    Chatzidimitriou, Dimitris
    Raymond, Jean-Florent
    Sau, Ignasi
    Thilikos, Dimitrios M.
    ALGORITHMICA, 2018, 80 (04) : 1330 - 1356