Fedlabx: a practical and privacy-preserving framework for federated learning

被引:0
|
作者
Yuping Yan
Mohammed B. M. Kamel
Marcell Zoltay
Marcell Gál
Roland Hollós
Yaochu Jin
Ligeti Péter
Ákos Tényi
机构
[1] Eötvös Loránd University,Department of Computer Algebra
[2] E-Group ICT Software Zrt,Smart Data Group
[3] Bielefeld University,Faculty of Technology
[4] Furtwangen University,Institute for Data Science, Cloud Computing and IT Security, IDACUS
[5] University of Kufa,Department of Computer Science
来源
关键词
Federated learning; Kafka; Secure aggregation; Differential privacy;
D O I
暂无
中图分类号
学科分类号
摘要
Federated learning (FL) draws attention in academia and industry due to its privacy-preserving capability in training machine learning models. However, there are still some critical security attacks and vulnerabilities, including gradients leakage and interference attacks. Meanwhile, communication is another bottleneck in basic FL schemes since large-scale FL parameter transmission leads to inefficient communication, latency, and slower learning processes. To overcome these shortcomings, different communication efficiency strategies and privacy-preserving cryptographic techniques have been proposed. However, a single method can only partially resist privacy attacks. This paper presents a practical, privacy-preserving scheme combining cryptographic techniques and communication networking solutions. We implement Kafka for message distribution, the Diffie–Hellman scheme for secure server aggregation, and gradient differential privacy for interference attack prevention. The proposed approach maintains training efficiency while being able to addressing gradients leakage problems and interference attacks. Meanwhile, the implementation of Kafka and Zookeeper provides asynchronous communication and anonymous authenticated computation with role-based access controls. Finally, we prove the privacy-preserving properties of the proposed solution via security analysis and empirically demonstrate its efficiency and practicality.
引用
收藏
页码:677 / 690
页数:13
相关论文
共 50 条
  • [1] Fedlabx: a practical and privacy-preserving framework for federated learning
    Yan, Yuping
    Kamel, Mohammed B. M.
    Zoltay, Marcell
    Gal, Marcell
    Hollos, Roland
    Jin, Yaochu
    Peter, Ligeti
    Tenyi, Akos
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 677 - 690
  • [2] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    [J]. Digital Communications and Networks., 2024, 10 (02) - 368
  • [3] PEPFL: A framework for a practical and ef fi cient privacy-preserving federated learning
    Chen, Yange
    Wang, Baocang
    Jiang, Hang
    Duan, Pu
    Ping, Yuan
    Hong, Zhiyong
    [J]. DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (02) : 355 - 368
  • [4] PPFed: A Privacy-Preserving and Personalized Federated Learning Framework
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Ding, Ming
    Zhou, Wanlei
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19380 - 19393
  • [5] A Verifiable and Privacy-Preserving Federated Learning Training Framework
    Duan, Haohua
    Peng, Zedong
    Xiang, Liyao
    Hu, Yuncong
    Li, Bo
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 5046 - 5058
  • [6] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [7] Practical Federated Learning Infrastructure for Privacy-Preserving Scientific Computing
    Wang, Lesi
    Zhao, Dongfang
    [J]. 2022 IEEE/ACM INTERNATIONAL WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S), 2022, : 38 - 43
  • [8] Practical Privacy-Preserving Federated Learning in Vehicular Fog Computing
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Xiang, Tao
    Lu, Rongxing
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (05) : 4692 - 4705
  • [9] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [10] Privacy-preserving federated learning framework in multimedia courses recommendation
    Qin, YangJie
    Li, Ming
    Zhu, Jia
    [J]. WIRELESS NETWORKS, 2023, 29 (04) : 1535 - 1544